Skip to main content
Log in

Predator interference alters foraging behavior of a generalist predatory arthropod

  • Behavioral ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

An Erratum to this article was published on 14 August 2015

Abstract

Interactions between predators foraging in the same patch may strongly influence patch use and functional response. In particular, there is continued interest in how the magnitude of mutual interference shapes predator–prey interactions. Studies commonly focus on either patch use or the functional response without attempting to link these important components of the foraging puzzle. Predictions from both theoretical frameworks suggest that predators should modify foraging efforts in response to changes in feeding rate, but this prediction has received little empirical attention. We study the linkage between patch departure rates and food consumption by the hunting spider, Pardosa milvina, using field enclosures in which prey and predator densities were manipulated. Additionally, the most appropriate functional response model was identified by fitting alternative functional response models to laboratory foraging data. Our results show that although prey availability was the most important determinant of patch departure rates, a greater proportion of predators left enclosures containing elevated predator abundance. Functional response parameter estimation revealed significant levels of interference among predators leading to lower feeding rates even when the area allocated for each predator was kept constant. These results suggest that feeding rates determine patch movement dynamics, where interference induces predators to search for foraging sites that balance the frequency of agonistic interactions with prey encounter rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrams PA (2007) Habitat choice in predator-prey systems: spatial instability due to interacting adaptive movements. Am Nat 169:581–594. doi:10.1086/512688

    Article  PubMed  Google Scholar 

  • Abrams PA (2010) Implications of flexible foraging for interspecific interactions: lessons from simple models. Funct Ecol 24:7–17. doi:10.1111/j.1365-2435.2009.01621.x

    Article  Google Scholar 

  • Abrams PA, Ginzburg LR (2000) The nature of predation: prey dependent, ratio dependent or neither? Trends Ecol Evol 15:337–341. doi:10.1016/s0169-5347(00)01908-x

    Article  PubMed  Google Scholar 

  • Anderson JJ (2010) Ratio- and predator-dependent functional forms for predators optimally foraging in patches. Am Nat 175:240–249. doi:10.1086/649606

    Article  PubMed  Google Scholar 

  • Arditi R, Akcakaya HR (1990) Underestimation of mutual interference of predators. Oecologia 83:358–361

    Article  Google Scholar 

  • Arditi R, Ginzburg LR (1989) Coupling in predator prey dynamics-ratio-dependence. J Theor Biol 139:311–326. doi:10.1016/s0022-5193(89)80211-5

    Article  Google Scholar 

  • Arditi R, Ginzburg LR (2012) How species interact: altering the standard view of trophic ecology. Oxford University Press, New York

    Book  Google Scholar 

  • Beddington JR (1975) Mutual interference between parasites or predators and its effect on searching efficiency. J Anim Ecol 44:331–340. doi:10.2307/3866

    Article  Google Scholar 

  • Brown JS (1988) Patch use as an indicator of habitat preference, predation risk, and competition. Behav Ecol Sociobiol 22:37–47. doi:10.1007/bf00395696

    Article  Google Scholar 

  • Buddle CN, Rypstra AL (2003) Factors initiating emigration of two wolf spider species (Araneae: Lycosidae) in an agroecosystem. Environ Entomol 32:88–95. doi:10.1603/0046-225x-32.1.88

    Article  Google Scholar 

  • Charnov EL, Orians GH, Hyatt K (1976) Ecological implications of resource depression. Am Nat 110:247–259. doi:10.1086/283062

    Article  Google Scholar 

  • Crowley PH, Martin EK (1989) Functional-responses and interference within and between year classes of a dragonfly population. J N Am Benthol Soc 8:211–221. doi:10.2307/1467324

    Article  Google Scholar 

  • Deangelis DL, Goldstein RA, Oneill RV (1975) Model for trophic interaction. Ecology 56:881–892. doi:10.2307/1936298

    Article  Google Scholar 

  • DeLong JP, Vasseur DA (2011) Mutual interference is common and mostly intermediate in magnitude. BMC Ecol 11:1

    Article  PubMed Central  PubMed  Google Scholar 

  • DeLong JP, Vasseur DA (2013) Linked exploitation and interference competition drives the variable behavior of a classic predator-prey system. Oikos 122:1393–1400

    Google Scholar 

  • Dondale CD, Redner JH (1990) The insects and arachnids of Canada. Part 17. The wolf spiders, nurseryweb spiders, and lynx spiders of Canada and Alaska. Agriculture Canada, Ottawa

    Google Scholar 

  • Ford MJ (1978) Locomotory activity and the predation strategy of the wolf spider Pardosa amentata (Clerck) (Lycosidae). Anim Behav 26:31–35. doi:10.1016/0003-3472(78)90005-2

    Article  Google Scholar 

  • Fryxell JM (2013) The great predator-prey debate. Ecology 94:1206–1207

    Article  Google Scholar 

  • Fryxell JM, Falls JB, Falls EA, Brooks RJ, Dix L, Strickland MA (1999) Density dependence, prey dependence, and population dynamics of martens in Ontario. Ecology 80:1311–1321. doi:10.1890/0012-9658(1999)080[1311:ddpdap]2.0.co;2

    Article  Google Scholar 

  • Hassell MP, Varley GC (1969) New inductive population model for insect parasites and its bearing on biological control. Nature 223:1133–2000. doi:10.1038/2231133a0

    Article  CAS  PubMed  Google Scholar 

  • Hastie TJ, Pregibon D (1992) Generalized linear models. Wadsworth and Brooks/Cole, California

    Google Scholar 

  • Holling CS (1961) Principles of insect predation. Annu Rev Entomol 6:163–200. doi:10.1146/annurev.en06.010161.001115

    Article  Google Scholar 

  • Iwasa Y, Higashi M, Yamamura N (1981) Prey distribution as a factor determining the choice of optimal foraging strategy. Am Nat 117:710–723. doi:10.1086/283754

    Article  Google Scholar 

  • Jensen CXJ, Ginzburg LR (2005) Paradoxes or theoretical failures? The jury is still out. Ecol Model 188:3–14. doi:10.1016/j.ecolmodel.2005.05.001

    Article  Google Scholar 

  • Kimbrell T, Holt RD, Lundberg P (2007) The influence of vigilance on intraguild predation. J Theor Biol 249:218–234. doi:10.1016/j.jtbi.2007.07.031

    Article  PubMed  Google Scholar 

  • Krivan V, Schmitz OJ (2003) Adaptive foraging and flexible food web topology. Evol Ecol Res 5:623–652

    Google Scholar 

  • Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:1–10. doi:10.1007/s00442-004-1497-3

    Article  PubMed  Google Scholar 

  • Laundre JW, Hernandez L, Altendorf KB (2001) Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, USA. Can J Zool-Rev Can Zool 79:1401–1409. doi:10.1139/cjz-79-8-1401

    Article  Google Scholar 

  • Lopez-Bao JV, Palomares F, Rodriguez A, Ferreras P (2011) Intraspecific interference influences the use of prey hotspots. Oikos 120:1489–1496. doi:10.1111/j.1600-0706.2011.19194.x

    Article  Google Scholar 

  • Lotka AJ (1925) Elements of physical biology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Marshall SD, Walker SE, Rypstra AL (2000) A test for a differential colonization and competitive ability in two generalist predators. Ecology 81:3341–3349. doi:10.1890/0012-9658(2000)081[3341:atfadc]2.0.co;2

    Article  Google Scholar 

  • Marshall SD, Pavuk DM, Rypstra AL (2002) A comparative study of phenology and daily activity patterns in the wolf spiders Pardosa milvina and Hogna helluo in soybean agroecosystems in southwestern Ohio (Araneae, Lycosidae). J Arachnol 30:503–510. doi:10.1636/0161-8202(2002)030[0503:acsopa]2.0.co;2

    Article  Google Scholar 

  • Marshall SD, Walker SE, Rypstra AL (2006) Two ecologically-divergent generalist predators have different responses to landscape fragmentation. Oikos 114:241–248. doi:10.1111/j.2006.0030-1299.14115.x

    Article  Google Scholar 

  • Nyffeler M, Sterling WL, Dean DA (1994) How spiders make a living. Environ Entomol 23:1357–1367

    Article  Google Scholar 

  • Perry G, Pianka ER (1997) Animal foraging: past, present and future. Trends Ecol Evol 12:360–364. doi:10.1016/s0169-5347(97)01097-5

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York Berlin Heidelberg

    Book  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Riechert SE, Lockley T (1984) Spiders as biological-control agents. Annu Rev Entomol 29:299–320. doi:10.1146/annurev.ento.29.1.299

    Article  Google Scholar 

  • Rypstra AL, Samu F (2005) Size dependent intraguild predation and cannibalism in coexisting wolf spiders (Araneae, Lycosidae). J Arachnol 33:390–397. doi:10.1636/ct05-10.1

    Article  Google Scholar 

  • Rypstra AL, Schmidt JM, Reif BD, DeVito J, Persons MH (2007) Tradeoffs involved in site selection and foraging in a wolf spider: effects of substrate structure and predation risk. Oikos 116:853–863. doi:10.1111/j.2007.0030-1299.15622.x

    Article  Google Scholar 

  • Samu F, Sziranyi A, Kiss B (2003) Foraging in agricultural fields: local ‘sit-and-move’ strategy scales up to risk-averse habitat use in a wolf spider. Anim Behav 66:939–947. doi:10.1006/anbe.2003.2265

    Article  Google Scholar 

  • Schmidt JM, Rypstra AL (2010) Opportunistic predator prefers habitat complexity that exposes prey while reducing cannibalism and intraguild encounters. Oecologia 164:899–910. doi:10.1007/s00442-010-1785-z

    Article  PubMed  Google Scholar 

  • Sih A (1984) The behavioral response race between predator and prey. Am Nat 123:143–150. doi:10.1086/284193

    Article  Google Scholar 

  • Skalski GT, Gilliam JF (2001) Functional responses with predator interference: viable alternatives to the Holling type II model. Ecology 82:3083–3092. doi:10.1890/0012-9658(2001)082[3083:frwpiv]2.0.co;2

    Article  Google Scholar 

  • Stephens DW, Brown JS, Ydenberg RC (2007) Foraging: behevior and ecology. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Sutherland WJ (1992) Game-theory models of functional and aggregative responses. Oecologia 90:150–152. doi:10.1007/bf00317820

    Article  Google Scholar 

  • van der Meer J, Ens BJ (1997) Models of interference and their consequences for the spatial distribution of ideal and free predators. J Anim Ecol 66:846–858

    Article  Google Scholar 

  • Walker SE, Rypstra AL (2002) Sexual dimorphism in trophic morphology and feeding behavior of wolf spiders (Araneae: Lycosidae) as a result of differences in reproductive roles. Can J Zool 80:679–688. doi:10.1139/z02-037

    Article  Google Scholar 

  • Wise DH (2006) Cannibalism food limitation intraspecific competition and the regulation of spider populations. Annu Rev Entomol 51:441–465

    Article  CAS  PubMed  Google Scholar 

  • Young OP, Edwards GB (1990) Spiders in United States field crops and their potential effect on crop pests. J Arachnol 18:1–27

    Google Scholar 

Download references

Acknowledgments

We thank Sam Evans and other undergraduate research assistants for help with the set-up of experiments and animal care. Michael Sitvarin kindly contributed comments on an early draft of the manuscript. This research was funded by the Department of Zoology (both Hamilton and Oxford, Ohio campuses), and we thank the Rodney Kolb for helping with field management at the Ecology Research Center at Miami University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason M. Schmidt.

Additional information

Communicated by Thomas S. Hoffmeister.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, J.M., Crist, T.O., Wrinn, K. et al. Predator interference alters foraging behavior of a generalist predatory arthropod. Oecologia 175, 501–508 (2014). https://doi.org/10.1007/s00442-014-2922-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-2922-x

Keywords

Navigation