Skip to main content

Advertisement

Log in

Seagrasses are negatively affected by organic matter loading and Arenicola marina activity in a laboratory experiment

  • Ecosystem ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

When two ecosystem engineers share the same natural environment, the outcome of their interaction will be unclear if they have contrasting habitat-modifying effects (e.g., sediment stabilization vs. sediment destabilization). The outcome of the interaction may depend on local environmental conditions such as season or sediment type, which may affect the extent and type of habitat modification by the ecosystem engineers involved. We mechanistically studied the interaction between the sediment-stabilizing seagrass Zostera noltii and the bioturbating and sediment-destabilizing lugworm Arenicola marina, which sometimes co-occur for prolonged periods. We investigated (1) if the negative sediment destabilization effect of A. marina on Z. noltii might be counteracted by positive biogeochemical effects of bioirrigation (burrow flushing) by A. marina in sulfide-rich sediments, and (2) if previously observed nutrient release by A. marina bioirrigation could affect seagrasses. We tested the individual and combined effects of A. marina presence and high porewater sulfide concentrations (induced by organic matter addition) on seagrass biomass in a full factorial lab experiment. Contrary to our expectations, we did not find an effect of A. marina on porewater sulfide concentrations. A. marina activities affected the seagrass physically as well as by pumping nutrients, mainly ammonium and phosphate, from the porewater to the surface water, which promoted epiphyte growth on seagrass leaves in our experimental set-up. We conclude that A. marina bioirrigation did not alleviate sulfide stress to seagrasses. Instead, we found synergistic negative effects of the presence of A. marina and high sediment sulfide levels on seagrass biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen FO, Kristensen E (1992) The importance of benthic macrofauna in decomposition of microalgae in a coastal marine sediment. Limnol Oceanogr 37:1392–1403

    Article  Google Scholar 

  • Ashforth EJ, Olive PJW, Ward AC (2011) Phylogenetic characterisation of bacterial assemblages and the role of sulphur-cycle bacteria in an Arenicola marina bioturbated mesocosm. Mar Ecol Prog Ser 439:19–30

    Article  Google Scholar 

  • Asmus H, Asmus RM (1998) The role of macrobenthic communities for sediment-water material exchange in the Sylt-Rømø tidal basin. Senckenb Marit 29:111–119

    Article  Google Scholar 

  • Asmus RM, Jensen MH, Jensen KM, Kristensen E, Asmus H, Wille A (1998) The role of water movement and spatial scaling for measurement of dissolved inorganic nitrogen fluxes in intertidal sediments. Estuar Coast Shelf Sci 46:221–232

    Article  CAS  Google Scholar 

  • Banta GT, Holmer M, Jensen MH, Kristensen E (1999) Effects of two polychaete worms: Nereis diversicolor and Arenicola marina, on aerobic and anaerobic decomposition in a sandy marine sediment. Aquat Microb Ecol 19:189–204

    Article  Google Scholar 

  • Bertness MD, Leonard GH (1997) The role of positive interactions in communities: lessons from the intertidal habitats. Ecology 78:1976–1989

    Article  Google Scholar 

  • Borum J et al (2005) The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. J Ecol 93:148–158

    Article  CAS  Google Scholar 

  • Bos A, van Katwijk MM (2007) Planting density, hydrodynamic exposure and mussel beds affect survival of transplanted intertidal seagrass. Mar Ecol Prog Ser 336:121–129

    Article  Google Scholar 

  • Bos A, Bouma T, Dekort G, Vankatwijk M (2007) Ecosystem engineering by annual intertidal seagrass beds: sediment accretion and modification. Estuar Coast Shelf Sci 74:344–348

    Article  Google Scholar 

  • Bouma TJ et al (2005) Trade-offs related to ecosystem engineering: a case study on stiffness of emerging macrophytes. Ecology 86:2187–2199

    Article  Google Scholar 

  • Bouma TJ, Olenin S, Reise K, Ysebaert T (2009) Ecosystem engineering and biodiversity in coastal sediments: posing hypotheses. Helgol Mar Res 63:95–106

    Article  Google Scholar 

  • Brun FG, van Zetten E, Cacabelos E, Bouma TJ (2009) Role of two contrasting ecosystem engineers (Zostera noltii and Cymodocea nodosa) on the food intake rate of Cerastoderma edule. Helgol Mar Res 63:19–25

    Article  Google Scholar 

  • Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–125

    Article  Google Scholar 

  • Cadée GC (1976) Sediment reworking by Arenicola marina on tidal flats in the Dutch Wadden Sea. Neth J Sea Res 10:440–460

    Article  Google Scholar 

  • Cadée GC (2001) Sediment dynamics by bioturbating organisms. In: Reise K (ed) Ecological comparisons of sedimentary shores. Springer, Berlin, pp 127–236

    Chapter  Google Scholar 

  • Calleja ML, Marba N, Duarte CM (2007) The relationship between seagrass (Posidonia oceanica) decline and sulfide porewater concentration in carbonate sediments. Estuar Coast Shelf Sci 73:583–588

    Article  Google Scholar 

  • Christianen MJA et al (2013) Low-canopy seagrass beds still provide important coastal protection services. Plos One 8:e62413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crain CM, Bertness MD (2006) Ecosystem engineering across environmental gradients: implications for conservation and management. Bioscience 56:211–218

    Article  Google Scholar 

  • Dean RB, Dixon WJ (1951) Simplified statistics for small numbers of observations. Anal Chem 23:636–638

    Article  CAS  Google Scholar 

  • Eklof JS, van der Heide T, Donadi S, van der Zee EM, O’Hara R, Eriksson BK (2011) Habitat-mediated facilitation and counteracting ecosystem engineering interactively influence ecosystem responses to disturbance. Plos One 6:e23229

    Article  PubMed Central  PubMed  Google Scholar 

  • Eriksson BK, van der Heide T, van de Koppel J, Piersma T, van der Veer HW, Olff H (2010) Major changes in the ecology of the Wadden Sea: human impacts, ecosystem engineering and sediment dynamics. Ecosystems 13:752–764

    Article  CAS  Google Scholar 

  • Flach EC, Beukeman JJ (1994) Density-governing mechanisms in populations of the lugworm Arenicola marina on tidal flats. Mar Ecol Prog Ser 115:139–149

    Article  Google Scholar 

  • Fonseca M (1989) Sediment stabilization by Halophila decipiens in comparison to other seagrasses. Estuar Coast Shelf Sci 29:501–507

    Article  Google Scholar 

  • Fonseca MS, Cahalan JA (1992) A preliminary evaluation of wave attenuation by 4 species of seagrass. Estuar Coast Shelf Sci 35:565–576

    Article  Google Scholar 

  • Govers et al (in revision) Toxic constraints for seagrass patch survival and expansion

  • Granata TC, Serra T, Colomer J, Casamitjana X, Duarte CM, Gacia E (2001) Flow and particle distributions in a nearshore seagrass meadow before and after a storm. Mar Ecol Prog Ser 218:95–106

    Article  Google Scholar 

  • Grilo TF, Cardoso PG, Pardal MA (2012) Implications of Zostera noltii recolonization on Hydrobia ulvae population structure success. Mar Environ Res 73:78–84

    Article  CAS  PubMed  Google Scholar 

  • Grossmann S, Reichardt W (1991) Impact of Arenicola marina on bacteria in intertidal sediments. Mar Ecol Prog Ser 77:85–93

    Article  Google Scholar 

  • Hansen K, King GM, Kristensen E (1996) Impact of the soft-shell clam Mya arenaria on sulfate reduction in an intertidal sediment. Aquat Microb Ecol 10:181–194

    Article  Google Scholar 

  • Hines ME, Jones GE (1985) Microbial biogeochemistry and bioturbation in the sediments of Great Bay, New Hampshire. Estuar Coast Shelf Sci 20:729–742

    Article  CAS  Google Scholar 

  • Holmer M, Nielsen SL (1997) Sediment sulfur dynamics related to biomass-density patterns in Zostera marina (eelgrass) beds. Mar Ecol Prog Ser 146:163–171

    Article  CAS  Google Scholar 

  • Hylleberg J (1975) Influence of the lugworm Arenicola marina on porewater nutrient profiles of sandflat sediments. Mar Ecol Prog Ser 62:241–248

    Google Scholar 

  • Isaksen MF, Finster K (1996) Sulphate reduction in the root zone of the seagrass Zostera noltii on the intertidal flats of a coastal lagoon (Arcachon, France). Mar Ecol Prog Ser 137:187–194

    Article  CAS  Google Scholar 

  • Jacobs R, Hegger HH, Raswillems A (1983) Seasonal variations in the structure of a Zostera community in tidal flats in the SW Netherlands, with special reference to the benthic fauna. Proc K Ned Akad Wetensch Ser C Biol Med Sci 86:347–375

    Google Scholar 

  • Jones CG, Lawton JH, Shackak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Jørgensen BB (1982) Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature 296:643–645

    Article  Google Scholar 

  • Koch EW et al (2009) Non-linearity in ecosystem-services: temporal and spatial variability in coastal protection. Front Ecol Environ 7:29–37

    Article  Google Scholar 

  • Kristensen E (2000) Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426:1–24

    Article  CAS  Google Scholar 

  • Kristensen E, Penha-Lopes G, Delefosse M, Valdemarsen T, Quintana CO, Banta GT (2012) What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar Ecol Prog Ser 446:285–302

    Article  Google Scholar 

  • Lamers LPM, Tomassen HBM, Roelofs JGM (1998) Sulfate-induced eutrophication and phytotoxicity in freshwater wetlands. Environ Sci Technol 32:199–205

    Article  CAS  Google Scholar 

  • Lamers LP et al (2013) Sulfide as a soil phytotoxin—a review. Front Plant Sci 4:268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mascaró O, Valdemarsen T, Holmer M, Pérez M, Romero J (2009) Experimental manipulation of sediment organic content and water column aeration reduces Zostera marina (eelgrass) growth and survival. J Exp Mar Biol Ecol 373:26–34

    Article  Google Scholar 

  • Meysman FJ, Middelburg JJ, Heip CH (2006) Bioturbation: a fresh look at Darwin’s last idea. Trends Ecol Evol 21:688–695

    Article  PubMed  Google Scholar 

  • Nielsen OI, Kristensen E, Holmer M (2003) Impact of Arenicola marina (Polychaeta) on sediment sulfur dynamics. Aquat Microb Ecol 33:95–105

    Article  Google Scholar 

  • Papaspyrou S, Kristensen E, Christensen B (2007) Arenicola marina (Polychaeta) and organic matter mineralisation in sandy marine sediments: in situ and microcosm comparison. Estuar Coast Shelf Sci 72:213–222

    Article  Google Scholar 

  • Passarelli C, Olivier F, Paterson DM, Meziane T, Hubas C (2013) Organisms as cooperative ecosystem engineers in intertidal flats. J Sea Res. doi:10.1016/j.seares.2013.07.010

  • Peralta G, Bouma TJ, van Soelen J, Perez-Llorens JL, Hernandez I (2003) On the use of sediment fertilization for seagrass restoration: a mesocosm study on Zostera marina L. Aquat Bot 75:95–110

    Article  Google Scholar 

  • Peralta G, van Duren LA, Morris EP, Bouma TJ (2008) Consequences of shoot density and stiffness for ecosystem engineering by benthic macrophytes in flow dominated areas: a hydrodynamic flume study. Mar Ecol Prog Ser 368:103–115

    Article  Google Scholar 

  • Peterson CH, Luettich RA, Micheli F, Skilleter GA (2004) Attenuation of water flow inside seagrass canopies of differing structure. Mar Ecol Prog Ser 268:81–92

    Article  Google Scholar 

  • Philippart CJM (1994) Interactions between Arenicola marina and Zostera noltii on a tidal flat in the Wadden Sea. Mar Ecol Prog Ser 111:251–257

    Article  Google Scholar 

  • Reise K (2002) Sediment mediated species interactions in coastal waters. J Sea Res 48:127–141

    Article  Google Scholar 

  • Reise K, Kohlus J (2007) Seagrass recovery in the Northern Wadden Sea? Helgol Mar Res 62:77–84

    Article  Google Scholar 

  • Reise K, Herre E, Sturm M (2008) Mudflat biota since the 1930s: change beyond return? Helgol Mar Res 62:13–22

    Article  Google Scholar 

  • Rijken M (1979) Food and food uptake in Arenicola marina. Neth J Sea Res 13:406–421

    Article  Google Scholar 

  • Romero J, Lee K, Perez M, Mateo MA, Alcoverro T (2006) Nutrient dynamics in seagrass ecosystems. In: Larkum AWD, Orth RJ, Duarte AC (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht

    Google Scholar 

  • Sand-Jensen K (1977) Effects of epiphytes on eelgrass photo-synthesis. Aquat Bot 3:55–63

    Article  CAS  Google Scholar 

  • Suykerbuyk W et al (2012) Suppressing antagonistic bioengineering feedbacks doubles restoration success. Ecol Appl 22:1224-1231

    Google Scholar 

  • Timmermann K, Banta GT, Glud RN (2006) Linking Arenicola marina irrigation behavior to oxygen transport and dynamics in sandy sediments. J Mar Res 64:915–938

    Article  CAS  Google Scholar 

  • Tomasko DA, Lapointe BE (1991) Productivity and biomass of Thalassia testudinum as related to water column nutrient availability and epiphyte levels: field observations and experimental studies. Mar Ecol Prog Ser 75:9–17

    Article  Google Scholar 

  • Valdemarsen T, Kristensen E, Holmer M (2010) Sulfur, carbon, and nitrogen cycling in faunated marine sediments impacted by repeated organic enrichment. Mar Ecol Prog Ser 400:37–53

    Article  CAS  Google Scholar 

  • Valdemarsen T, Wendelboe K, Egelund JT, Kristensen E, Flindt MR (2011) Burial of seeds and seedlings by the lugworm Arenicola marina hampers eelgrass (Zostera marina) recovery. J Exp Mar Biol Ecol 410:45–52

    Article  Google Scholar 

  • Valentine JF, Heck KL, Harper P, Beck M (1994) Effects of bioturbation in controlling turtlegrass (Thalassia testudinum Banks ex König) abundance: evidence from field enclosures and observations in the Northern Gulf of Mexico. J Exp Mar Biol Ecol 178:181–192

    Article  Google Scholar 

  • Van Beusekom JEE (2005) A historic perspective on Wadden Sea eutrophication. Helgol Mar Res 59:45–54

    Article  Google Scholar 

  • Van der Heide T, Van Nes EH, Van Katwijk MM, Olff H, Smolders AJP (2011) Positive feedbacks in seagrass ecosystems—evidence from large-scale empirical data. Plos One 6:e16504

    Google Scholar 

  • Van der Heide T et al (2012) A three-stage symbiosis forms the foundation of seagrass ecosystems. Science 336:1432–1434

    Article  PubMed  Google Scholar 

  • Van Katwijk MM, Bos AR, De Jonge VN, Hanssen LSAM, Hermus DCR, De Jong DJ (2009) Guidelines for seagrass restoration: importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects. Mar Pollut Bull 58:179–188

    Article  PubMed  Google Scholar 

  • Van Wesenbeeck BK, Van de Koppel J, Herman PMJ, Bakker JP, Bouma TJ (2007) Biomechanical warfare in ecology; negative interactions between species by habitat modification. Oikos 116:742–750

    Article  Google Scholar 

  • Vermaat JE, Verhagen FCA (1996) Seasonal variation in the intertidal seagrass Zostera noltii Hornem.: coupling demographic and physiological patterns. Aquat Bot 52:259–281

    Article  Google Scholar 

  • Volkenborn N, Reise K (2006) Lugworm exclusion experiment: responses by deposit feeding worms to biogenic habitat transformations. J Exp Mar Biol Ecol 330:169–179

    Article  Google Scholar 

  • Volkenborn N, Hedtkamp SIC, van Beusekom JEE, Reise K (2007) Effects of bioturbation and bioirrigation by lugworms (Arenicola marina) on physical and chemical sediment properties and implications for intertidal habitat succession. Estuar Coast Shelf Sci 74:331–343

    Article  Google Scholar 

  • Wendelboe K, Egelund JT, Flindt MR, Valdemarsen T (2013) Impact of lugworms (Arenicola marina) on mobilization and transport of fine particles and organic matter in marine sediments. J Sea Res 76:31–38

    Article  Google Scholar 

  • Wood ED, Armstron FA, Richards FA (1967) Determination of nitrate in sea water by Cadmium-Copper reduction to nitrite. J Mar Biol Assoc UK 47:23

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Niki de Lange for helping out during the experiment, to Germa Verheggen and Martin Versteeg for their technical support, to Jelle Eygensteyn for his help with the analyses, and to the people at the NIOZ Yerseke nutrient lab for their help with the nutrient analyses. We also thank three anonymous referees for their suggestions to improve the quality of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura L. Govers.

Additional information

Communicated by Ulrich Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govers, L.L., Pieck, T., Bouma, T.J. et al. Seagrasses are negatively affected by organic matter loading and Arenicola marina activity in a laboratory experiment. Oecologia 175, 677–685 (2014). https://doi.org/10.1007/s00442-014-2916-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-2916-8

Keywords

Navigation