Skip to main content

Sediment Dynamics by Bioturbating Organisms

  • Chapter
Ecological Comparisons of Sedimentary Shores

Part of the book series: Ecological Studies ((ECOLSTUD,volume 151))

Abstract

Judging from the few pages dealing with bioturbation in books on coastal sediment dynamics (e. g. Hails and Carr 1975; Dyer 1986), one might conclude bioturbation to be unimportant in sediment dynamics: waves and (tidal) currents have a predominant role in sediment transport and erosion. Is this conclusion wrong? Probably not: For the Lister Basin near Sylt, Bayerl et al. (1998) conclude that reworking of sediments is mainly physical, certainly in exposed parts hardly influenced by bioturbation. With an increase in current strength and/or wave exposure (energy in the environment), sediment transport will increase. This is not the case with bioturbation. In very high-energy environments, sediment transport is too high for benthic organisms to live, so bioturbation is also absent. Under absence of water movement, benthic organisms also will not thrive. If oxygen deficiency also occurs they may be even completely absent. In between these extremes of environmental energy, benthic organisms and, therefore, bioturbation play a role. Sediment transport by bioturbation is mainly vertical, within the sediment column, whereas currents and waves transport sediment along the bottom. However, both are linked, e. g. sediment brought to the surface by organisms may be taken up and dispersed by currents. We can visualise sediment transport in a very simple model (Fig. 6.1) in which energy is on the X-axis, sediment dynamics on the Y-axis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel O (1935) Vorzeitliche Lebenspuren. Fischer, Jena, 644 pp

    Google Scholar 

  • Able KW, Grimes CB, Cooper RA, Uzmann JR (1982) Burrow construction and behavior of tile fish, Lopholatilus chamaeleonticeps, in Hudson submarine canyon. Env Biol Fish 7:199–205

    Article  Google Scholar 

  • Able KW, Twichell DC, Grimes CB, Jones RS (1987) Tilefish of the genus Caulolatilus construct burrows in the sea floor. Bull Mar Sci 40:1–10

    Google Scholar 

  • Aitken AE, Risk MJ, Howard JD (1988) Animal-sediment relationships on a subarctic intertidal flat, Pangnirtung Fjord, Baffin Island, Canada. J Sed Petrol 58:969–978

    Google Scholar 

  • Aller RC, Dodge RE (1974) Animal-sediment relations in a tropical lagoon Discovery Bay, Jamaica. J Mar Res 32:209–232

    Google Scholar 

  • Bayerl K, Austen I, Köster R, Pejrup M, Witte G (1998) Dynamik der Sedimente im Lister Tidebecken. In: Gätje C, Reise K (eds) Ökosystem Wattenmeer-Austausch-, Transport-und Stoffumwandlungsprozesse. Springer-Verlag, Berlin Heidelberg New York, pp 127–159

    Google Scholar 

  • Berkenbusch K, Rowden AA (1999) Factors influencing sediment turnover by the burrowing ghost shrimp Callianassa filholi (Decapoda: Thalassinidea). J Exp Mar Biol Ecol 238:283–292

    Article  Google Scholar 

  • Black KS, Paterson DM, Cramp A (eds) (1998) Sedimentary processes in the intertidal zone. Spec Publ Geol Soc Lond 139, pp 1–409

    Google Scholar 

  • Boudreau BP (1998) Mean mixed depth of sediments: The wherefore and the why. Limnol Oceanogr 43:524–526

    Article  Google Scholar 

  • Briggs JC (1995) Global biogeography. Developments in palaeontology and stratigraphy, vol 14. Elsevier, Amsterdam

    Google Scholar 

  • Bromley RG (1990) Trace fossils, biology and taphonomy. Special topics in paleontology. Unwin and Hyman, London (2nd edn 1996)

    Google Scholar 

  • Bromley RG, Curran HA, Frey RW, Gutschick RC, Suttner LJ (1975) Problems in interpreting unusually large burrows. In: Frey RW (ed) The study of trace fossils. Springer-Verlag, Berlin Heidelberg New York, pp 351–376

    Chapter  Google Scholar 

  • Cadée GC (1976) Sediment reworking by Arenicola marina on tidal flats in the Dutch Wadden Sea. Neth J Sea Res 10:440–460

    Article  Google Scholar 

  • Cadée GC (1979) Sediment reworking by the polychaete Heteromastus filiformis on a tidal flat in the Dutch Wadden Sea. Neth J Sea Res 13:441–456

    Article  Google Scholar 

  • Cadée GC (1984) ‘Opportunistic feeding’, a serious pitfall in trophic structure analysis of (paleo )faunas. Lethaia 17:289–292

    Article  Google Scholar 

  • Cadée GC (1990) Feeding traces and bioturbation by birds on a tidal flat, Dutch Wadden Sea. Ichnos 1:23–30

    Article  Google Scholar 

  • Cadée GC (1998) The influence of benthic fauna and microflora. In: Eisma D (ed) Intertidal deposits, river mouths, tidal flats, and coastal lagoons. CRC Press, Boca Raton, pp 383–402

    Google Scholar 

  • Calkins DG (1977) Feeding behavior and major prey species of the sea otter, Enhydra lutris, in Mantague Strait, Prince William Sound, Alaska. Fish Bull 6:125–131

    Google Scholar 

  • Crozier JW (1918) The amount of bottom material ingested by holothurians (Stichopus). Contr Bermuda Biol Stn 88:379–389

    Google Scholar 

  • Daborn GR, Amos CL, Brylinsky M, Christian H, Drapeau G, Faas RW, Grant J, Long B, Paterson DM, Perillo GME, Piccolo MC (1993) An ecological cascade effect: migratory birds affect stability of intertidal sediments. Limnol Oceanogr 38:225–231

    Article  CAS  Google Scholar 

  • Dapples EC (1938) The sedimentational effects of the work of marine scavengers. Am J Sc (5th series) 36:54–65

    Article  Google Scholar 

  • Dapples EC (1942) The effects of macro-organisms upon near-shore marine sediments. J Sed Petrol 12:118–126

    Google Scholar 

  • Darwin C (1837) On the formation of mould. Trans Geol Soc Lond 5:505–509

    Article  Google Scholar 

  • Darwin C (1881) On the formation of vegetable mould through the action of worms with observations on their habits. Murray, London

    Google Scholar 

  • Davison C (1891) On the amount of sand brought up by lobworms to the surface. Geol Mag 8:489–493

    Article  Google Scholar 

  • De Groot SJ (1984) The impact of bottom trawling on benthic fauna of the North Sea. Ocean Manag 9:177–190

    Article  Google Scholar 

  • De Smet WMA (1981) Evidence of whaling in the North Sea and English Channel during the middle ages. In: Mammals in the seas. FAO Fish Ser 5(III):301–309

    Google Scholar 

  • Dionne C (1985) Tidal marsh erosion by geese, St. Lawrence estuary, Quebec. Geogr Phys Quat 39:99–105

    Google Scholar 

  • Dyer KR (1986) Coastal and estuarine sediment dynamics. John Wiley and Sons, Chichester

    Google Scholar 

  • Ekdale AA, Bromley RG, Pemberton SG (1984) Ichnology, Trace fossils in sedimentology and stratigraphy. SEPM Short Course 15:1–317

    Google Scholar 

  • Ekman S (1953) Zoogeography of the sea. Sidgwick and Jackson, London

    Google Scholar 

  • Frey RW (ed) (1975) The study of trace fossils. Springer-Verlag, Berlin Heidelberg New York

    Book  Google Scholar 

  • Frey RW, Mayou TV (1971) Decapod burrows in Holocene barrier island beaches and washover fans. Senckenbergiana Marit 3:53–77

    Google Scholar 

  • Frey RW, Howard JD, Pryor WA (1978) Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 23:199–229

    Article  Google Scholar 

  • Gardiner JS (1931) Coral reefs and atolls. MacMillan, London

    Google Scholar 

  • Graf G, Rosenberg R (1997) Bioresuspension and biodeposition: a review. J Mar Systems 11:269–278

    Article  Google Scholar 

  • Gregory MR, Ballance PF, Gibson GW, Ayling AM (1979) On how some rays (Elasmobranchia) excavate feeding depressions by jetting water. J Sed Petrol 49:1125–1130

    Google Scholar 

  • Hails J, Carr A (eds) (1975) Nearshore sediment dynamics and sedimentation. John Wiley, London, New York

    Google Scholar 

  • Hall SJ, Basford DJ, Robertson MR, Rafaelli DG, Tuck I (1991) Patterns of recolonisation and the importance of pit-digging by the crab Cancer pagurus in a subtidal sand habitat. Mar Ecol Prog Ser 72:93–102

    Article  Google Scholar 

  • Hertweck G (1970) Die Bewohner des Wattenmeeres in ihren Auswirkungen auf das Sediment. In: Reineck H-E (ed) Das Watt, Ablagerungs-und Lebensraum. Kramer, Frankfurt/Main, pp 106–130

    Google Scholar 

  • Hertweck G (1994) Zonation of benthos and lebensspuren in the tidal flats of the Jade Bay, southern North Sea. Senckenbergiana Marit 24:157–170

    Google Scholar 

  • Hines AH, Loughlin TR (1980) Observations of sea otters digging for clams at Monterey Harbor, California. Fish Bull 78:159–163

    Google Scholar 

  • Howard JD (1975) The sedimentological significance of trace fossils. In: Frey RW (ed) The study of trace fossils. Springer-Verlag, Berlin Heidelberg New York, pp 131–146

    Chapter  Google Scholar 

  • Howard JD, Reineck H-E (1972) Georgia coastal region, Sapelo Island, USA: Sedimentology and biology IV. Physical and biogenic sedimentary structures of the nearshore shelf. Senckenbergiana Marit 4:81–123

    Google Scholar 

  • Howard JD, Reineck H-E, Rietschel S (1974) Biogenic sedimentary structures formed by heart urchins. Senckenbergiana Marit 6:185–201

    Google Scholar 

  • Howard JD, Mayou TV, Heard RW (1977) Biogenic sedimentary structures formed by rays. J Sed Petrol 47:339–346

    Google Scholar 

  • Hylleberg J (1975) Selective feeding by Abarenicola pacifica with notes on Abarenicola vagabunda, and a concept of gardening in lugworms. Ophelia 14:113–137

    Article  Google Scholar 

  • Jenkin PM (1957) The filter-feeding and food of flamingoes (Phoenicopteri). Philos Trans R Soc Lond B 240:401–493

    Article  Google Scholar 

  • Johnson KR, Nelson CH (1984) Side-scan sonar assessment of Gray whale feeding in the Bering Sea. Science 225:1150–1152

    Article  PubMed  CAS  Google Scholar 

  • Kastelein RA, Mosterd P (1989) The excavation techniques for molluscs of Pacific walrusses (Odobenus rosmarus divergens) under controlled conditions. Aquat Mammals 15:3–5

    Google Scholar 

  • Kastelein RA, Gerrits NM, Dubbeldam JL (1991) The anatomy of the walrus head (Odobenus rosmarus), part 2: description of the muscles and of their role in feeding and haul-out behaviour. Aquat Mammals 17:156–180

    Google Scholar 

  • Kastelein RA, Muller M, Terlouw A (1994) Oral suction of a Pacific walrus (Odobenus rosmarus divergens) in air and under water. Z Säugtierkd 59:105–115

    Google Scholar 

  • Katz LC (1980) Effects of burrowing by the fiddler crab Uca pugnax (Smith). Est Coast Mar Sc 11:233–237

    Article  Google Scholar 

  • Keith A (1942) A postscript to Darwin’s “Formation of vegetable mould through the action of worms”. Nature 147:716–720

    Article  Google Scholar 

  • Komman BA, De Deckere EMGT (1998). Temporal variation in sediment erodability and suspended sediment dynamics in the Dollard estuary. In: Black KS, Paterson DM, Cramp A (eds) Sedimentary processes in the intertidal zone. Spec Publ Geol Soc Lond 139:231–241

    Google Scholar 

  • Krejci-Graf K (1935) Beobachtungen am Tropenstrand. I. Bauten und Fährten von Krabben. Senckenbergiana 17:21–32

    Google Scholar 

  • Kruger F (1959) Zur Ernährungsphysiologie von Arenicola marina. Zool Anz 22:115–120

    Google Scholar 

  • Lee H, Swartz RC (1980) Biological processes affecting the distribution of pollutants in marine sediments, part II. In: Baker RA (ed) Contaminants sediments, vol 2. Ann Arbor Science Pub., Ann Arbor, MI, USA, pp 555–606

    Google Scholar 

  • Leopold MF (1999) Na schelpdiervisserij in de Waddenzee en Noordzee-kustzone, nu ook schelpdiervisserij verder op zee. Nieuwsbrief Ned Zeevogelgroep 1(2):1–2

    Google Scholar 

  • Levinton J (1995) Bioturbators as ecosystem engineers: control of the sediment fabric, inter-individual interactions, and material fluxes. In: Jones CG, Lawton JH (eds) Linking species and ecosytems. Chapman and Hall, New York, pp 29–36

    Chapter  Google Scholar 

  • Lindeboom HJ, de Groot SJ (1998) The effects of different types of fisheries on the North Sea and Irish Sea benthic ecosystems. NIOZ Rapport 1:1–404

    Google Scholar 

  • Linke O (1939) Die Biota des Jadebusenwattes. Helgol Wiss Meeresunters 1:201–348

    Article  Google Scholar 

  • McGinitie GE (1934) The natural history of Callianassa californiensis. Am Midl Nat 15:166–177

    Article  Google Scholar 

  • McGinitie GE, McGinitie N (1968) Natural history of marine animals, 2nd edn. McGrawHill, New York

    Google Scholar 

  • McManus J (1998) Temporal and spatial variations in estuarine sedimentation. Estuaries 21:622–634

    Article  Google Scholar 

  • Meadows PS, Meadows A (1991) The environmental impact of burrowing animals and animal burrows. Symp Zool Soc Lond 63:1–349

    Google Scholar 

  • Myrick JL, Flessa KW (1996) Bioturbation rates in Bahia la ehoya, Mexico. Cienc Mar 22:23–46

    Google Scholar 

  • Nakaoka M, Aioa K (1999) Growth of seagrass Halophila ovalis at dugong trails compared to existing within-patch variation in a Thailand intertidal flat. Mar Ecol Prog Ser 184:97-103

    Google Scholar 

  • Nelson CH, Johnson KR, Barber JH (1987) Gray whale and walrus feeding excavations on the Bering Shelf, Alaska. J Sed Petrol 57:419–430

    Google Scholar 

  • Oliver JS, Slattery PN, O’Connor EF, Lowry LF (1983) Walrus, Odobenus rosmarus, feeding in the Bering Sea: a benthic perspective. Fish Bull 81:501–512

    Google Scholar 

  • Paterson DM, Black KS (1999) Water flow, sediment dynamics and benthic biology. In: Nedwell DB, Raffaelli DG (eds) Estuaries. Adv Ecol Res 29:155–194

    Google Scholar 

  • Pemberton SG, Frey RW (1990) Darwin on worms: the advent of experimental neoichnology. Ichnos 1:65–71

    Article  Google Scholar 

  • Piersma T, Koolhaas A (1997) Shorebirds, shellfish(eries) and sediments around Griend, western Wadden Sea, 1988–1996. NIOZ Rapport 7:1–118

    Google Scholar 

  • Polderman PJG, Den Hartog C (1975) De zeegrassen in de Waddenzee. Wetensch Meded. Kon Ned Natuurh Ver 107:1–32

    Google Scholar 

  • Preen A (1995) Impacts of dugong foraging on seagrass habitats: observational and experimental evidence for cultivation grazing. Mar Ecol Prog Ser 124:201–213

    Article  Google Scholar 

  • Reineck H-E (1963) Sedimentgefüge im Bereich der südlichen Nordsee. Abh Senckenb Naturf Ges 505 1–13.

    Google Scholar 

  • Reineck H-E (1967) Parameter von Schichtung und Bioturbation. Geol Rundsch 56:420–438

    Article  Google Scholar 

  • Reineck H-E (1976) Primärgefüge, Bioturbation und Makrofauna als Indikatoren des Sandversatzes im Seegebiet vor Norderney (Nordsee). I. Zonierung von Primärgefügen und Bioturbation. Senckenbergiana Marit 8:155–169

    Google Scholar 

  • Reineck H-E (1977) Natural indicators of energy level in recent sediments: the application of ichnology to a coastal engineering problem. In: Crimes TP, Harper JC (eds) Trace fossils 2. Geol J Spec Issue 9:265–272

    Google Scholar 

  • Reineck H-E, Cheng YM (1978) Sedimentologische und faunistische Untersuchungen an Watten in Taiwan. I. Aktuogeologische Untersuchungen. Senckenbergiana Marit 10:85–115

    Google Scholar 

  • Reineck H-E, Singh IB (1971) Der Golf von Gaeta (Thyrrhenisches Meer). III. Die Gefüge von Vorstrand-und Schelfsedimenten. Senckenbergiana Marit 3:185–201

    Google Scholar 

  • Reineck H-E, Singh IB (1975) Depositional sedimentary environments. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Reise K (1982) Long-term changes in the macro benthic invertebrates of the Wadden Sea: are polychaetes about to take over? Neth J Sea Res 16:29–36

    Article  Google Scholar 

  • Reise K (1985) Tidal flat ecology. Springer-Verlag, Berlin Heidelberg New York

    Book  Google Scholar 

  • Rhoads DC (1963) Rates of sediment reworking by Yoldia limatula in Buzzards Bay, Massachusetts, and Long Island Sound. J Sed Petrol 33:723–727

    Google Scholar 

  • Rhoads DC (1967) Biogenic reworking of intertidal and subtidal sediments in Barnstable Harbor and Buzzards Bay, Massachusetts. J Geol 75:461–476

    Article  Google Scholar 

  • Rhoads DC (1974) Organism-sediment relations on the muddy sea floor. Oceanogr Mar Biol Annu Rev 12:263–300

    CAS  Google Scholar 

  • Rhoads DC, Boyer LF (1982) The effects of marine benthos on physical properties of sediments, a successional perspective. In: McCall PL, Tevesz MJS (eds) Animal-sediment relations. The biogenic alteration of sediments. Plenum, New York, pp 3–52

    Google Scholar 

  • Rhoads DC, Young DK (1970) The influence of deposit-feeding organisms on sediment stability and community trophic structure. J Mar Res 28:150–178

    Google Scholar 

  • Rhoads DC, Young DK (1971) Animal-sediment relations in Cape Cod Bay, Massachusetts. II. Reworking by Molpadia oolithica (Holothuroidea). Mar Biol 11:255–261

    Article  Google Scholar 

  • Richter R (1924) Flachseebeobachtungen zur Paläontologie und Geologie. VII. Arenicola von heute und “Arenicoloides”, eine Rhizocorallide des Buntsandsteins, als Vertreter verschiedener Lebensweise. Senckenbergiana 6:119–140

    Google Scholar 

  • Richter R (1928) Aktuopaläontologie und Paläobiologie, eine Abgrenzung. Senckenbergiana 10:285–292

    Google Scholar 

  • Richter R (1952) Fluidal-Textur in Sediment-Gesteinen und über Sedifluktion über-haupt. Notizbl Hess L-Amt Bodenforsch 6:67–81

    Google Scholar 

  • Riisgård HU, Banta GT (1998) Irrigation and deposit feeding by the lugworm Arenicola marina, characteristics and secondary effects on the environment. A review of recent knowledge. Vie Milieu 48:243–257

    Google Scholar 

  • Rijken M (1979) Food and food uptake in Arenicola marina. Neth J Sea Res 13:406–421

    Article  Google Scholar 

  • Rowden AA, Jones MB, Morris AW (1998) The role of Callianassa subterranea (Montagu) (Thalassinidea) in sediment resuspension in the North Sea. Cont Shelf Res 18:1365–1380

    Article  Google Scholar 

  • Schäfer W (1956) Wirkungen der Benthos-Organismen auf den jungen Schichtverband. Senckenbergiana Lethaea 37:183–263

    Google Scholar 

  • Schäfer W (1962) Aktuo-paläontologie nach Studien in der Nordsee. Kramer, Frankfurt/ Main. (English translation, 1972: Ecology and paleoecology of marine environments. Univ Chicago Press, Chicago)

    Google Scholar 

  • Schäfer W (1963) Biozonöse und Biofazies im marinen Bereich. Kramer, Frankfurt/Main Seilacher A (1964) Biogenic sedimentary structures. In: Imbrie J, Newell ND (eds) Approaches to paleontology. John Wiley, New York, pp 296–316

    Google Scholar 

  • Seilacher A (1967) Fossil behavior. Sci Am 217:72–80

    Article  Google Scholar 

  • Suchanek TH (1983) Control of seagrass communities and sediment distribution by Callianassa (Crustacea, Thalassinidea) bioturbation. J Mar Res 41:281–289

    Article  Google Scholar 

  • Tamaki A (1988) Effects of the bioturbating activity of the ghost shrimp Callianassa japonica Ortmann on migration of a mobile polychaete. J Exp Mar Biol Ecol 120:81–95

    Article  Google Scholar 

  • Thorson G (1957) Bottom communities (sublittoral or shallow shelf). In: Hedgpeth JW (ed) Treatise on marine ecology and paleoecology. Geol Soc Am Mem 67(1):461–534

    Google Scholar 

  • Underwood GJC, Paterson DM (1993) Seasonal changes in diatom biomass, sediment stability and biogenic stabilization in the Severn estuary. J Mar Biol Assoc UK 73:871–887

    Article  Google Scholar 

  • VanBlaricom G (1982) Experimental analysis of structural regulation in a marine sand community exposed to oceanic swell. Ecol Monogr 52:283–305

    Article  Google Scholar 

  • Van Deinse AB, Junge GCA (1937) Recent and older finds of the California Gray whale in the Atlantic. Temminckia 2:161–188

    Google Scholar 

  • Verwey J (1930) Einiges über Biologie ost-indischer Mangrovenkrabben. Treubia 12:169–261

    Google Scholar 

  • Walker PA, Heessen HJL (1996) Long-term changes in ray populations in the North Sea. ICES J Mar Sc 53:1085–1093

    Article  Google Scholar 

  • Weitkamp LA, Wissmar RC, Simenstad CA, Fresh KL, Odell JG (1992) Gray whale foraging on ghost shrimp (Callianassa californiensis) in littoral sand flats of Puget Sound, USA. Can J Zool 70:2275–2280

    Article  Google Scholar 

  • Wells GP (1966) The lugworm (Arenicola)-a study in adaptation. Neth J Sea Res 3:294–313

    Article  Google Scholar 

  • Wesenberg-Lund C (1905) Umformungen des Erdbodens. Beziehungen zwischen Dammerde, Marsch, Wiesenland und Schlamm. Prometheus 16:561–566; 577-582. (Translated from Danish)

    Google Scholar 

  • Witbaard R, Duineveld GCA (1989) Some aspects of the biology and ecology of the burrowing shrimp Callianassa subterranea (Montagu) (Thalassinidea) from the southern North Sea. Sarsia 74:209–219

    Google Scholar 

  • Wietfield F (1980) Trampelwannen von Brandgänsen und Eiderenten. Natur Museum 110:170–174

    Google Scholar 

  • Wohlenberg E (1937) Die Wattenmeer-Lebensgemeinschaften im Königshafen von Sylt. Helgol Wiss Meeresunters 1:1–92

    Article  Google Scholar 

  • Woodin SA (1978) Refuges, disturbance, and community structure: a marine softbottom example. Ecology 59:274–284

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cadée, G.C. (2001). Sediment Dynamics by Bioturbating Organisms. In: Reise, K. (eds) Ecological Comparisons of Sedimentary Shores. Ecological Studies, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56557-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56557-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62517-6

  • Online ISBN: 978-3-642-56557-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics