Skip to main content
Log in

Virus strains differentially induce plant susceptibility to aphid vectors and chewing herbivores

  • Plant-microbe-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Plants are frequently attacked by both pathogens and insects, and an attack from one can induce plant responses that affect resistance to the other. However, we currently lack a predictive framework for understanding how pathogens, their vectors, and other herbivores interact. To address this gap, we have investigated the effects of a viral infection in the host plant on both its aphid vector and non-vector herbivores. We tested whether the infection by three different strains of Potato virus Y (PVYNTN, PVYNO and PVYO) on tomato plants affected: (1) the induced plant defense pathways; (2) the abundance and fecundity of the aphid vector (Macrosiphum euphorbiae); and (3) the performance of two non-vector species: a caterpillar (Trichoplusia ni) and a beetle (Leptinotarsa decemlineata). While infection by all three strains of PVY induced the salicylate pathway, PVYNTN induced a stronger and longer response. Fecundity and density of aphids increased on all PVY-infected plants, suggesting that the aphid response is not negatively associated with salicylate induction. In contrast, the performance of non-vector herbivores positively correlated with the strength of salicylate induction. PVYNTN infection decreased plant resistance to both non-vector herbivores, increasing their growth rates. We also demonstrated that the impact of host plant viral infection on the caterpillar results from host plant responses and not the effects of aphid vector feeding. We propose that pathogens chemically mediate insect–plant interactions by activating the salicylate pathway and decreasing plant resistance to chewing insects, which has implications for both disease transmission and insect community structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe H et al (2012) Antagonistic plant defense system regulated by phytohormones assists interactions among vector insect, thrips and a tospovirus. Plant Cell Physiol 53:204–212

    Article  CAS  PubMed  Google Scholar 

  • Alvarez AE, Garzo E, Verbeek M, Vosman B, Dicke M, Tjallingii WF (2007) Infection of potato plants with Potato leafroll virus changes attraction and feeding behaviour of Myzus persicae. Entomol Exp Appl 125:135–144

    Article  Google Scholar 

  • Asselbergh B, Achuo A, Hofte M, Van Gijsegem F (2008) Abscisic acid deficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemi. Mol Plant Pathol 9:11–24

    CAS  PubMed  Google Scholar 

  • Baebler Š, Krečič-Stres H, Rotter A, Kogovšek P, Cankar K, Kok EJ, Gruden K, Kovač M, Zel J, Pompe-Novak M, Ravnikar M (2009) PVYNTN elicits a diverse gene expression response in different potato genotypes in the first 12 h after inoculation. Mol Plant Pathol 10:263–275

    Article  CAS  PubMed  Google Scholar 

  • Belliure B, Janssen A, Maris PC, Peter D, Sabelis MW (2005) Herbivore arthropods benefit from vectoring plant viruses. Ecol Lett 8:70–79

    Article  Google Scholar 

  • Belliure B, Janssen A, Sabelis MW (2008) Herbivore benefits from vectoring plant virus through reduction of period of vulnerability to predation. Oecologia 156:797–806

    Article  PubMed Central  PubMed  Google Scholar 

  • Belliure B, Sabelis MW, Janssen A (2010) Vector and virus induce plant responses that benefit a non-vector herbivore. Basic Appl Ecol 11:162–169

    Article  Google Scholar 

  • Blua MJ, Perring TM, Madore MA (1994) Plant virus-induced changes in aphid population development and temporal fluctuations in plant nutrients. J Chem Ecol 20:691–707

    Article  CAS  PubMed  Google Scholar 

  • Boquel S, Ameline A, Giordanengo P (2011a) Assessing aphids potato virus Y-transmission efficiency: a new approach. J Virol Methods 178:63–67

    Article  CAS  PubMed  Google Scholar 

  • Boquel S, Giordanengo P, Ameline A (2011b) Divergent effects of PVY-infected potato plant on aphids. Eur J Plant Pathol 129:507–510

    Article  CAS  Google Scholar 

  • Cardoza YJ, Lait CG, Schmelz EA, Huang J, Tumlinson JH (2003) Fungus-induced biochemical changes in peanut plants and their effect on development of beet armyworm, Spodoptera exigua Hubner (Lepidoptera : Noctuidae) larvae. Environ Entomol 32:220–228

    Article  CAS  Google Scholar 

  • Castle SJ, Berger PH (1993) Rates of growth and increase of Myzus persicae on virus-infected potatoes according to type of virus-vector relationship. Entomol Exp Appl 69:51–60

    Article  Google Scholar 

  • Colvin J et al (2006) Host-plant viral infection effects on arthropod-vector population growth, development and behaviour: management and epidemiological implications. Adv Virus Res 67:419–452

    Article  CAS  PubMed  Google Scholar 

  • Cui JP, Jander G, Racki LR, Kim PD, Pierce NE, Ausubel FM (2002) Signals involved in Arabidopsis resistance to Trichoplusia ni caterpillars induced by virulent and avirulent strains of the phytopathogen Pseudomonas syringae. Plant Physiol 129:551–564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cui J et al (2005) Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc Natl Acad Sci USA 102:1791–1796

    Article  CAS  PubMed  Google Scholar 

  • Delaney TP (1994) A central role of salicylic-acid in plant-disease resistance. Science 266:1793

    Article  Google Scholar 

  • Eigenbrode SD, Ding H, Shiel P, Berger PH (2002) Volatiles from potato plants infected with Potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera; Aphididae). Proc Natl Acad Sci USA 269:455–460

    CAS  Google Scholar 

  • Felton GW et al (1999) Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. Curr Biol 9:317–320

    Article  CAS  PubMed  Google Scholar 

  • Fidantsef AL, Stout MJ, Thaler JS, Duffey SS, Bostock RM (1999) Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum. Physiol Mol Plant Pathol 54:97–114

    Article  CAS  Google Scholar 

  • Goggin FL, Williamson VM, Ullman DE (2001) Variability in the response of Macrosiphum euphorbiae and Myzus persicae (Hemiptera: Aphididae) to the tomato resistance gene Mi. Environ Entomol 30:101–106

    Article  Google Scholar 

  • Hare JD, Dodds JA (1987) Survival of the Colorado potato beetle on virus-infected tomato in relation to plant nitrogen and alkaloid content. Entomol Exp Appl 44:31–35

    Article  CAS  Google Scholar 

  • Harrington R, Gibson RW (1989) Transmission of Potato virus Y by aphids trapped in potato crops in southern England. Potato Res 32:167–174

    Article  Google Scholar 

  • Herbers K, Takahata Y, Melzer M, Mock H-P, Hajirezaei M, Sonnewald U (2000) Regulation of carbohydrate partitioning during the interaction of Potato virus Y with tobacco. Mol Plant Pathol 1:51–59

    Article  CAS  PubMed  Google Scholar 

  • Hodge S, Powell G (2008) Do plant viruses facilitate their aphid vectors by inducing symptoms that alter behavior and performance? Environ Entomol 37:1573–1581

    Article  PubMed  Google Scholar 

  • Hodge S, Powell G (2010) Conditional facilitation of an aphid vector, Acyrthosiphon pisum, by the plant pathogen, Pea enation mosaic virus. J Insect Sci 10:155

    Article  PubMed Central  PubMed  Google Scholar 

  • Inbar M, Doostdar H, Gerling D, Mayer RT (2001) Induction of systemic acquired resistance in cotton by BTH has a negligible effect on phytophagous insects. Entomol Exp Appl 99:65–70

    Article  CAS  Google Scholar 

  • Jensen DD (1959) A plant virus lethal to its insect vector. Virology 8:164–175

    Article  CAS  PubMed  Google Scholar 

  • Jiu M, Zhou XP, Tong L, Xu J, Yang X, Wan FH, Liu SS (2007) Vector-virus mutualism accelerates population increase of an invasive whitefly. PLoS ONE 1:e182

    Article  Google Scholar 

  • Kennedy JS (1951) Benefits to aphids from feeding on galled and virus-infected leaves. Nature 168:825

    Article  CAS  PubMed  Google Scholar 

  • Kluth S, Kruess A, Tscharntke T (2002) Insects as vectors of plant pathogens: mutualistic and antagonistic interactions. Oecologia 133:193–199

    Article  Google Scholar 

  • Kogovšek P, Pompe-Novak M, Baebler Š, Rotter A, Gow L, Gruden K, Foster GD, Boonham N, Ravnikar M (2010) Aggressive and mild Potato virus Y isolates trigger different specific responses in susceptible potato plants. Plant Pathol 59:1121–1132

    Article  Google Scholar 

  • Kovač M, Müller A, Milovanovič Jarh D, Milavec M, Düchting P, Ravnikar M (2009) Multiple hormone analysis indicates involvement of jasmonate signalling in the early defence of potato to Potato virus Y NTN. Biol Plant 53:195–199

    Article  Google Scholar 

  • Krečič-Stres H, Vucak C, Ravnikar M, Kovač M (2005) Systemic Potato virus Y NTN infection and levels of salicylic and gentisic acids in different potato genotypes. Plant Pathol 54:441–447

    Article  Google Scholar 

  • Kusajima M, Yasuda M, Kawashima A, Nojiri H, Yamane H, Nakajima M, Akutsu K, Nakashita H (2010) Suppressive effect of abscisic acid on systemic acquired resistance in tobacco plants. J Gen Plant Pathol 76:161–167

    Article  CAS  Google Scholar 

  • Leon-Reyes A, Van der Does D, De Lange ES, Delker C, Wasternack C, Van Wees SCM, Ritsema T, Pieterse CMJ (2010) Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta 232:1423–1432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  CAS  PubMed  Google Scholar 

  • Mauck KE, De Moraes CM, Mescher MC (2010a) Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc Natl Acad Sci USA 107:3600–3605

    Article  CAS  PubMed  Google Scholar 

  • Mauck KE, De Moraes CM, Mescher MC (2010b) Effects of Cucumber mosaic virus infection on vector and non-vector herbivores of squash. Commun Integr Biol 3:579–582

    Article  PubMed  Google Scholar 

  • Mauck KE, Bosque-Pérez NA, Eigenbrode SD, De Moraes CM, Mescher MC (2012) Transmission mechanisms shape pathogen effects on host–vector interactions: evidence from plant viruses. Funct Ecol 26:1162–1175

    Article  Google Scholar 

  • Mayer RT et al (2002) Multi-trophic interactions of the silverleaf whitefly, host plants, competing herbivores, and phytopathogens. Arch Insect Biochem Physiol 51:151–169

    Article  CAS  PubMed  Google Scholar 

  • Mehle N, Kovač M, Petrovič N, Novak MP, Baebler Š, Stres HK, Gruden K, Ravnikar M (2004) Spread of potato virus YNTN in potato cultivars (Solanum tuberosum L.) with different levels of sensitivity. Physiol Mol Plant Pathol 64:293–300

    Article  CAS  Google Scholar 

  • Mello AFS, Olarte RA, Gray SM, Perry KL (2011) Transmission efficiency of Potato virus Y strains PVYO and PVYN–Wi by five aphid species. Plant Dis 95:1279–1283

    Article  Google Scholar 

  • Mowry TM, Ophus JD (2006) Influence of the Potato leafroll virus and virus infected plants on the arrestment of the aphid, Myzus persicae. J Insect Sci 6:22

    Article  PubMed Central  Google Scholar 

  • Muller CB, Williams IS, Hardie J (2001) The role of nutrition, crowding and interspecific interactions in the development of winged aphids. Ecol Entomol 26:330–340

    Article  Google Scholar 

  • Nanayakkara UN, Nie X, Giguère M, Zhang J, Boquel S, Pelletier Y (2012) Aphid feeding behavior in relation to Potato virus Y (PVY) acquisition. J Econ Entomol 105:1903–1908

    Article  CAS  PubMed  Google Scholar 

  • Nault LR (1997) Arthropod transmission of plant viruses: a new synthesis. Ann Entomol Soc Am 90:521–541

    Google Scholar 

  • Ng JCK, Falk BW (2006) Virus–vector interactions mediating nonpersistent and semi-persistent transmission of plant viruses. Annu Rev Phytopathol 44:193–212

    Article  Google Scholar 

  • Ng JCK, Perry KL (2004) Transmission of plant viruses by aphid vectors. Mol Plant Pathol 5:505–511

    Article  PubMed  Google Scholar 

  • Pan X, Welti R, Wang X (2008) Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry 69:1773–1781

    Article  CAS  PubMed  Google Scholar 

  • Preston CA, Lewandowski C, Enyedi AJ, Baldwin IT (1999) Tobacco mosaic virus inoculation inhibits wound-induced jasmonic acid-mediated responses within but not between plants. Planta 209:87–95

    Article  CAS  PubMed  Google Scholar 

  • Raubenheimer D, Simpson SJ (1992) Analysis of covariance––an alternative to nutritional indexes. Entomol Exp Appl 62:221–231

    Article  Google Scholar 

  • Ryals J, Uknes S, Ward E (1994) Systemic acquired-resistance. Plant Physiol 104:1109–1112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sano H, Ohashi Y (1995) Involvement of small gtp-binding proteins in defense signal-transduction pathways of higher-plants. Proc Natl Acad Sci USA 92:4138–4144

    Article  CAS  PubMed  Google Scholar 

  • Scholthof KG et al (2011) Top ten plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954

    Article  CAS  PubMed  Google Scholar 

  • Shalitin D, Wolf S (2000) Cucumber mosaic virus infection affects sugar transport in melon plants. Plant Physiol 123:597–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh RP et al (2008) Discussion paper: the naming of Potato virus Y strains infecting potato. Arch Virol 153:1–13

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan R, Alvarez JM (2007) Effect of mixed viral infections (Potato virus Y-Potato leafroll virus) on biology and preference of vectors Myzus persicae and Macrosiphum euphorbiae (Hemiptera: Aphididae). J Econ Entomol 100:646–655

    Article  PubMed  Google Scholar 

  • Stout MJ, Thaler JS, Thomma B (2006) Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu Rev Entomol 51:663–689

    Article  CAS  PubMed  Google Scholar 

  • Sylvester ES (1980) Circulative and propagative virus transmission by aphids. Annu Rev Entomol 25:257–286

    Article  Google Scholar 

  • Thaler JS, Bostock RM (2004) Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects. Ecology 85:48–58

    Article  Google Scholar 

  • Thaler JS, Fidantsef AL, Duffey SS, Bostock RM (1999) Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. J Chem Ecol 25:1597–1609

    Article  CAS  Google Scholar 

  • Thaler JS, Fidantsef AL, Bostock RM (2002) Antagonism between jasmonate- and salicylate-mediated induced plant resistance: effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. J Chem Ecol 28:1131–1159

    Article  CAS  PubMed  Google Scholar 

  • Thaler JS, Owen B, Higgins VJ (2004) The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiol 135:530–538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thaler JS, Agrawal AA, Halitschke R (2010) Salicylate-mediated interactions between pathogens and herbivores. Ecology 91:1075–1082

    Article  PubMed  Google Scholar 

  • Thaler JS, McArt SH, Kaplan I (2012) Compensatory mechanisms for ameliorating the fundamental trade-off between predator avoidance and foraging. Proc Natl Acad Sci USA 109:12075–12080

    Article  CAS  PubMed  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317

    Article  CAS  PubMed  Google Scholar 

  • Underwood N, Halpern S, Klein C (2011) Effect of host-plant genotype and neighboring plants on strawberry aphid movement in the greenhouse and field. Am Midl Nat 165:38–49

    Article  Google Scholar 

  • Verbeek M, Piron PGM, Dullemans AM, Cuperus C, van der Vlugt RAA (2009) Determination of aphid transmission efficiencies for N, NTN and Wilga strains of Potato virus Y. Ann Appl Biol 156:39–49

    Article  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Yang JY, Iwasaki M, Machida C, Machida Y, Zhou XP, Chua NH (2008) Beta C1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes Dev 22:2564–2577

    Article  CAS  PubMed  Google Scholar 

  • Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143:866–875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang P, Zheng SJ, van Loon JJA, Boland W, David A, Mumm R, Dicke M (2009) Whiteflies interfere with indirect plant defense against spider mites in Lima bean. Proc Natl Acad Sci USA 106:21202–21207

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are greatly indebted to Dawn Smith and Stewart Gray’s laboratory for kindly helping us with viral infection and proving the virus strains used in the experiments. We thank Rayko Halitschke for his valuable assistance in the phytohormone analyses, Ordom Huot for his help with laboratory work, and Cesar Rodriguez-Saona and Isgouhi Kaloshian for providing the aphids. This study strongly benefited from comments and suggestions by Anurag Agrawal, Alison Power, Gui Becker, Suzi Claflin, Scott McArt, Ian Kaplan, the editor John Lill, and two anonymous reviewers. This project received financial support from Sigma Xi (Cornell Chapter), the Department of Ecology and Evolutionary Biology, and the Department of Entomology at Cornell. M. F. K. B. is recipient of the Olin fellowship and the CAPES/Fulbright fellowship (BEX 2234-08-4). The experiments comply with the current laws of the USA, in which the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mônica F. Kersch-Becker.

Additional information

Communicated by John Lill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kersch-Becker, M.F., Thaler, J.S. Virus strains differentially induce plant susceptibility to aphid vectors and chewing herbivores. Oecologia 174, 883–892 (2014). https://doi.org/10.1007/s00442-013-2812-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2812-7

Keywords

Navigation