Skip to main content
Log in

Is there sex-biased resistance and tolerance in Mediterranean wood mouse (Apodemus sylvaticus) populations facing multiple helminth infections?

  • Population ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Sex-biased parasitism is rarely investigated in relation to host tolerance and resistance, which are two defense strategies hosts can adopt when challenged by parasites. Health or fitness deteriorations in less tolerant individuals with increasing parasite burden would be faster than those in more tolerant ones. Hence, the body condition and reproductive potential of an infected individual host can be considered proxies for tolerance to parasitism. We studied Mediterranean populations of the wood mouse (Apodemus sylvaticus) and its helminth parasites. We assessed their resistance using the phytohemagglutinin test and spleen size, and their tolerance using body condition in males and females and testes mass in males. In order to avoid spurious correlations, we took into account the phylogeographic structure of the Mediterranean wood mouse populations. We used a mixed model adapted from the animal model used in quantitative genetics. While helminth infection did not differ between the two sexes, females and males differed in their measured defenses. Females seem to invest more in immune defense with increasing risk of parasite diversity, but also appear to be potentially more tolerant of parasitic diversity. These results suggest the existence of sexual differences in resistance and tolerance, and that measurements of parasitic loads alone could be insufficient to detect any underlying sexual differences in the two strategies that have evolved in response to multiple parasitic attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamczewska-Andrezejwska KA (1967) Age reference model for Apodemus flavicollis (Melchior, 1834). Ekologia Polska 15:788–790

    Google Scholar 

  • Ali NM, Behnke JM (1985) Observations on the gross changes in the secondary lymphoid organs of mice infected with Nematospiroides dubius. J Helminthol 59:167–174

    Article  PubMed  CAS  Google Scholar 

  • Arneberg P (2002) Host population density and body mass as determinants of species richness in parasite communities: comparative analyses of directly transmitted nematodes of mammals. Ecography 25:88–94

    Article  Google Scholar 

  • Attuquayefio DK, Gorman ML, Wolton RJ (1985) Home range sizes in the wood mouse Apodemus sylvaticus: habitat, sex and seasonal differences. J Zool 210:45–53

    Article  Google Scholar 

  • Bateman A (1948) Intrasexual selection in Drosophila. Heredity 2:349–368

    Article  PubMed  CAS  Google Scholar 

  • Baucom RS, de Roode JC (2011) Ecological immunology and tolerance in plants and animals. Func Ecol 25:18–28

    Article  Google Scholar 

  • Behnke JM, Lewis JW, Zain SN, Gilbert FS (1999) Helminth infections in Apodemus sylvaticus in southern England: interactive effects of host age, sex and year on the prevalence and abundance of infections. J Helminthol 73:31–44

    PubMed  CAS  Google Scholar 

  • Beldomenico PM, Telfer S, Gebert S, Lukomski L, Bennett M, Begon M (2008) Poor condition and infection: a vicious circle in natural populations. Proc R Soc London B 275:1753–1759

    Article  Google Scholar 

  • Beldomenico PM, Telfer S, Lukomski L, Gebert S, Bennett M, Begon M (2009a) Host condition and individual risk of cowpox virus infection: cause or effect? Epidermiol Infect 137:1295–1301

    Article  CAS  Google Scholar 

  • Beldomenico PM, Telfer S, Gebert S, Lukomski L, Bennett M, Begon M (2009b) The vicious circle and infection intensity: the case of Trypanosoma microti in field vole populations. Epidemics 1:162–167

    Article  PubMed  Google Scholar 

  • Bize P, Jeanneret C, Klopfenstein A, Roulin A (2008) What makes a host profitable? Parasites balance host nutritive resources against immunity. Am Nat 171:107–118

    Article  PubMed  Google Scholar 

  • Blanchet S, Rey O, Loot G (2010) Evidence for host variation in parasite tolerance in a wild fish population. Evol Ecol 24:1129–1139

    Article  Google Scholar 

  • Bordes F, Morand S (2009) Parasite diversity: an overlooked metric of parasite pressures? Oikos 118:801–806

    Article  Google Scholar 

  • Bordes F, Morand S, Kelt DA, Van Vuren DH (2009) Home range and parasite diversity in mammals. Am Nat 173:467–474

    Article  PubMed  Google Scholar 

  • Boughton RK, Joop G, Armitage SAO (2011) Outdoor immunology: methodological considerations for ecologists. Func Ecol 25:81–100

    Article  Google Scholar 

  • Bradley J, Jackson JA (2008) Measuring immune system variation to help understand host–pathogen community dynamics. Parasitology 135:1–17

    Google Scholar 

  • Brown CR, Brown MB (2002) Spleen volume varies with colony size and parasite load in a colonial bird. Proc R Soc London B 269:1367–1373

    Article  Google Scholar 

  • Clarke D (1986) Tolerance of parasites and diseases in plants and its significance in host–parasite interactions. Adv Plant Pathol 5:161–197

    Google Scholar 

  • Cowan KM, Shutler D, Herman TB, Stewart DT (2007) Extreme male biased infections of masked shrews by bladder nematodes. J Mam 88:1539–1543

    Article  Google Scholar 

  • Cowan KM, Shutler D, Herman TB, Stewart DT (2009) Splenic mass of masked shrews, Sorex cinereus, in relation to body mass, sex, age, day of the year and bladder nematode, Liniscus (=Capillaria) maseri, infection. J Parasitol 95:228–230

    Article  PubMed  Google Scholar 

  • Cox RM, Parker EU, Cheney DM et al (2010) Experimental evidence for physiological costs underlying the trade-off between reproduction and survival. Func Ecol 24:1262–1269

    Article  Google Scholar 

  • Demas GE, Zysling DA, Beecher BR, Muehlenbein MP, French SS (2011) Beyond phytohaemaglutinin: assessing vertebrate immune function across ecological contexts. J Anim Ecol 80:710–730

    Google Scholar 

  • Dick CW, Gannon MR, Little WE, Patrick MJ (2003) Ectoparasite associations of bats from central Pennsylvania. J Med Entomol 40:813–819

    Article  PubMed  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Ferrari N, Cattadori IM, Nespereira J, Rizzoli A, Hudson PJ (2004) The role of host sex in parasite dynamics: field experiments on the yellow-necked mouse Apodemus flavicollis. Ecol Lett 7:88–94

    Article  Google Scholar 

  • Folstad I, Karter AJ (1992) Parasites, bright males, and the immunocompetence handicap. Am Nat 139:603–622

    Article  Google Scholar 

  • French SS, de Nardo DF, Moore MC (2007) Trade-offs between the reproductive and immune systems: facultative responses to resources or obligate responses to reproduction? Am Nat 170:79–89

    Article  PubMed  Google Scholar 

  • Fuentes MV, Saez S, Trelis M, Galan-Puchades MT, Esteban JG (2004) The helminth community of the wood mouse, Apodemus sylvaticus in the Sierra Espuna Murcia, Spain. J Helminthol 78:219–223

    Article  PubMed  CAS  Google Scholar 

  • Fumagalli M, Pozzoli U, Cagliani R, Comi GP et al (2009) Parasites represent a major selective force for interleukine genes and shape the genetic predisposition to autoimmune conditions. J Exp Med 206:1395–1408

    Article  PubMed  CAS  Google Scholar 

  • Fumagalli M, Pozzoli U, Cagliani R, Comi GP et al (2010) The landscape of human genes involved in the immune response to parasitic worms. BMC Evol Biol 10:264

    Article  PubMed  Google Scholar 

  • Goüy de Bellocq J, Sarà M, Casanova JC, Feliu C, Morand S (2003) A comparison of the structure of helminth communities of the wild woodmouse, Apodemus sylvaticus on islands of the Western Mediterranean and continental Europe. Parasitol Res 90:64–70

    Google Scholar 

  • Goüy de Bellocq J, Ribas A, Casanova JC, Morand S (2007) Immunocompetence and helminth community of the white-toothed shrew, Crocidura russula from the Montseny Natural Park, Spain. Eur J Wild Res 53:315–320

    Article  Google Scholar 

  • Graham AL, Hayward AD, Watt KA, Pilkington JG, Pemberton JM, Nussey DH (2010) Fitness correlates of heritable variation in antibody responsiveness in a wild mammal. Science 330:662–665

    Article  PubMed  CAS  Google Scholar 

  • Harrison A, Scantlebury M, Montgomery WI (2010) Body mass and sex-biased parasitism in wood mice Apodemus sylvaticus. Oikos 119:1099–1104

    Article  Google Scholar 

  • Hillegass MA, Waterman JM, Roth JD (2008) The influence of sex and sociality on parasite loads in an African ground squirrel. Behav Ecol 19:1006–1011

    Article  Google Scholar 

  • Hoby S, Scharzenberger F, Doherr MG, Robert N, Walzer C (2006) Steroid hormone related male biased parasitism in chamois, Rupicapra rupicapra rupicapra. Vet Parasitol 138:337–348

    Article  PubMed  CAS  Google Scholar 

  • Horak P, Tummelecht L, Talvik H (2006) Predictors and markers of resistance to neurotropic nematode infection in rodent host. Parasitol Res 98:396–402

    Article  PubMed  Google Scholar 

  • Jackson JA, Begon M, Birtles R et al (2011) The analysis of immunological profiles in wild animals: a case study on immunodynamics in the field vole, Microtus agrestis. Mol Ecol 20:893–909

    Article  PubMed  CAS  Google Scholar 

  • Kanuch P, Kristin A, Kristofik J (2005) Phenology, diet, and ectoparasites of Leisler’s bat (Nyctalus leisleri) in the western Carpathians (Slovakia). Acta Chiropterologica 7:249–257

    Article  Google Scholar 

  • Kennedy MV, Nager R (2006) The perils and prospects of using phytohaemagglutinin in evolutionary ecology. Trends Ecol Evol 21:653–655

    Article  PubMed  Google Scholar 

  • Khokhlova IS, Krasnov BR, Kam M, Burdelova NI, Degen AA (2002) Energy cost of ectoparasitism: the flea Xenopsylla ramesis on the desert gerbil Gerbillus dasyurus. J Zool 258:349–354

    Article  Google Scholar 

  • Kiffner C, Vor T, Hagedorn P, Niedrig M, Ruhe F (2011) Factors affecting patterns of tick parasitism on forest rodents in tick-borne encephalitis risk areas, Germany. Parasitol Res 108:323–335

    Article  PubMed  Google Scholar 

  • Klein SL (2004) Hormonal and immunological mechanisms mediating sex differences in parasite infection. Parasite Immunol 26:247–264

    Article  PubMed  CAS  Google Scholar 

  • Klein SL, Nelson RJ (1998) Adaptative immune responses are linked to the mating system of arvicoline rodents. Am Nat 151:59–67

    Article  PubMed  CAS  Google Scholar 

  • Krasnov BR, Morand S, Hawlena H, Khokhlova I, Shenbrot GI (2005) Sex biased parasitism, seasonality and sexual size dimorphism in desert rodents. Oecologia 146:209–217

    Article  PubMed  Google Scholar 

  • Krasnov BR, Bordes F, Khokhlova IS, Morand S (2012) Gender-biased parasitism in small mammals: patterns, mechanisms, consequences. Mammalia (in press)

  • Lefebvre F, Mounaix B, Poizat G, Crivelli AJ (2004) Impacts of the swimbladder nematode Anguillicola crassus on Anguilla anguilla: variations in liver and spleen masses. J Fish Biol 64:435–447

    Article  Google Scholar 

  • Lefèvre T, Williams AO, Roode JC (2011) Genetic variation in resistance but not tolerance, to a protozoan parasite in the monarch butterfly. Proc R Soc Lond B 278:751–759

    Article  Google Scholar 

  • Leitner G, Heller D, Friedman A (1989) Sex-related differences in immune response and survival rate of broiler chickens. Vet Immunol Immunopathol 21:249–260

    Article  PubMed  CAS  Google Scholar 

  • Limaye N, Blobrajdic KA, Wandstrat AE, Bonhomme F, Edwards SV, Wakeland EK (2008) Prevalence and evolutionary origins of autoimmune susceptibility alleles in natural mouse populations. Genes Immun 9:61–68

    Article  PubMed  CAS  Google Scholar 

  • Lindström KM, Foufopoulos J, Pärn H, Wikelski M (2004) Immunological investments reflect parasite abundance in island populations of Darwin’s finches. Proc R Soc London B 271:1513–1519

    Article  Google Scholar 

  • Lochmiller RL, Derenberg C (2000) Trade-offs in evolutionary ecology: just what is the cost of immunity? Oikos 88:87–98

    Article  Google Scholar 

  • Lynch M (1991) Methods for the analysis of comparative data in evolutionary biology. Evolution 45:1065–1080

    Article  Google Scholar 

  • Ma Y, Seiler KP, Eichwald EJ, Weis JH, Teuscher C, Weis JJ (1998) Distinct characteristics of resistance to Borrelia burgdorferi-induced arthritis in C57BL/6 N mice. Infect Immun 66:161–168

    Google Scholar 

  • Malo AF, Roldan ERS, Garde JJ, Soler AJ, Vicente J, Gortazar C, Gomendio M (2009) What does testosterone do for red deer males? Proc R Soc Lond B 276:971–980

    Article  CAS  Google Scholar 

  • Martin LB, Wiel ZM, Nelson RJ (2008) Seasonal changes in vertebrate immune activity: mediation by physiological trade-offs. Phil Trans R Soc Lond B 363:321–339

    Article  Google Scholar 

  • Michaux J, Goüy de Bellocq J, Sara M, Morand S (2002) Body size increase in insular rodent populations: a role for predators? Glob Ecol Biogeogr 11:427–436

    Article  Google Scholar 

  • Milazzo C, Di Bella C, Casanova JC, Ribas A, Cagnin M (2010) Helminth communities of wood mouse (Apodemus sylvaticus) on the River Avena (Calabria), Southern Italy). Hystrix Italian J Mam 21:171–176

    Google Scholar 

  • Mills SC, Grapputo A, Jokinen I, Koskela E, Mappes T, Oksanen TA, Poikonen T (2009) Testosterone-mediated effects on fitness-related phenotypic traits and fitness. Am Nat 173:475–487

    Article  PubMed  Google Scholar 

  • Moore SL, Wilson K (2002) Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297:2015–2018

    Article  PubMed  CAS  Google Scholar 

  • Morand S, Goüy de Bellocq J, Stanko M, Miklisová D (2004) Is sex-biased ectoparasitism related to sexual size dimorphism in small mammals of central Europe? Parasitology 129:505–510

    Article  PubMed  CAS  Google Scholar 

  • Munyeme M, Munang’andu HM, Muma JB, Nambota AM, Biffa D, Siamudaala VM (2011) Investigating effects of parasite infection on body condition of the Kafue lechwe (Kobus leche kafuensis) in the Kafue basin. BMC Res Notes 3:346

    Article  Google Scholar 

  • Navarro-Gonzalez N, Verheyden H, Hoste H, Cargnelutti B, Lourtet B, Merlet J, Daufresne T, Lavín S, Hewison AJM, Morand S, Serrano E (2010) Diet quality and immunocompetence influence parasite load of roe deer in a fragmented landscape. Eur J Wild Res 57:639–645

    Article  Google Scholar 

  • Nieberding C, Morand S, Libois R, Michaux JR (2004) A parasite reveals cryptic phylogeographic history of its host. Proc R Soc London B 271:2559–2568

    Article  CAS  Google Scholar 

  • Nunn CL, Lindenfors P, Pursall ER, Rolff J (2009) On sexual dimorphism in immune function. Phil Trans R Soc Lond B 364:61–69

    Article  Google Scholar 

  • Pap PL, Czirjak GA, Vagasi SI, Barta Z, Hasselquist DS (2010) Sexual dimorphism in immune function changes during the annual cycle in house sparrows. Naturwissenschaften 97:891–901

    Article  PubMed  CAS  Google Scholar 

  • Parapanov RN, Nusslé S, Crausaz M, Senn A, Hausser J, Vogel P (2009) Testis size, sperm characteristics and testosterone concentrations in four species of shrews (Mammalia, Soricidae). Anim Reprod Sci 114:269–278

    Article  PubMed  CAS  Google Scholar 

  • Patterson BD, Dick CW, Dittmar K (2008) Sex biases in parasitism of neotropical bats by bat flies (Diptera: Streblidae). J Trop Ecol 24:387–396

    Article  Google Scholar 

  • Pedersen AB, Babayan SA (2011) Wild immunology. Mol Ecol 20:872–880

    Article  PubMed  CAS  Google Scholar 

  • Peig J, Green AJ (2010) The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Func Ecol 24:1323–1332

    Article  Google Scholar 

  • Perez-Orella C, Schulte-Hostedde AI (2005) Effects of sex and body size on ectoparasite loads in the northern flying squirrel (Glaucomys sabrinus). Can J Zool 83:1381–1385

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed effect models in S and S-plus. Springer, New York

  • Pinzan CF, Ruas LP, Casabona-Fortunado AS et al (2010) Immunological basis for the gender differences in murine Paracoccidioides brasiliensis infection. PLoS ONE 55:10757

    Article  Google Scholar 

  • Ponlet N, Chaisiri K, Claude J, Morand S (2011) Incorporating parasite systematic in comparative analyses of variation in spleen mass and testes sizes of rodents. Parasitology 138:1804–1814

    Google Scholar 

  • Poulin R (1996) Sexual inequalities in helminth infections: a cost of being male? Am Nat 147:287–295

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, http://www.R-project.org

  • Råberg L, Sim D, Read AF (2007) Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science 318:812–814

    Article  PubMed  Google Scholar 

  • Råberg L, Graham AL, Read AF (2009) Decomposing health: tolerance and resistance to parasites in animals. Phil Trans R Soc Lond B 364:37–49

    Article  Google Scholar 

  • Roberts ML, Buchanna KL, Evans MR (2004) Testing the immunocompetence handicap hypothesis: a review of the evidence. Anim Behav 68:227–239

    Article  Google Scholar 

  • Rohr JS, Raffel TR, Hall CA (2010) Developmental variation in resistance and tolerance in a multi-host-parasite system. Func Ecol 24:1110–1121

    Article  Google Scholar 

  • Rolff J (2002) Bateman’s principle and immunity. Proc R Soc Lond B 269:867–872

    Article  Google Scholar 

  • Sak L, Karu U, Horak P (2006) Do standard measures of immunocompetence reflect parasite resistance? The case of greenfinch coccidiosis. Func Ecol 20:75–82

    Article  Google Scholar 

  • Sanchez A, Devevey G, Bize P (2011) Female-biased infection and transmission of the gastrointestinal nematode Trichuris arvicolae infecting the common vole Microtus arvalis. Int J Parasitol 41:1397–1402

    Article  PubMed  Google Scholar 

  • Scantlebury M, McWilliams MM, Marks NJ, Dick JTA, Edgar H, Lutermann H (2010) Effects of life-history traits on parasite load in grey squirrels. J Zool 282:246–255

    Article  Google Scholar 

  • Schneider DS, Ayres J (2008) Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nature Rev 8:889–895

    Google Scholar 

  • Schulte-Hostedde AI, Elsasser SC (2011) Spleen mass, body condition, and parasite loads in male American mink (Neovison vison). J Mammal 92:221–226

    Google Scholar 

  • Skorping A, Jensen KH (2004) Disease dynamics: all caused by males? Trends Ecol Evol 19:219–220

    Article  PubMed  Google Scholar 

  • Smits JE, Bortolotti GR, Tella JL (1999) Simplifying the phytohaemagglutinin skin-testing technique in studies of avian immuno-competence. Func Ecol 13:567–572

    Article  Google Scholar 

  • Tella JL, Lemus JA, Carrete M, Blanco G (2008) The PHA test reflects acquired T-cell mediated immunocompetence in birds. Plos One 3:e3295

    Google Scholar 

  • Tschirren B, Fitze PS, Richner H (2003) Sexual dimorphism in susceptibility to parasites and cell-mediated immunity in great tit nestlings. J Anim Ecol 72:839–845

    Article  Google Scholar 

  • Vicente J, Pérez-Rodríguez L, Gortázar C (2007) Sex, age, spleen size, and kidney fat of red deer relative to infection intensities of the lungworm Elaphostrongylus cervi. Naturwissenschaften 94:581–587

    Article  PubMed  CAS  Google Scholar 

  • Waterman J (2007) Male mating strategies. In: Wolf JO, Sherman PW (eds) Rodent societies: an ecological and evolutionary perspective. The University of Chicago Press, Chicago, pp 27–41

    Google Scholar 

  • Wauters LA, Dhondt AA (1995) Lifetime reproductive success and its correlates in female Eurasian red squirrels. Oikos 72:402–410

    Article  Google Scholar 

  • Wilson K, Moore SL, Owens IPF (2003) Response to comment on “Parasites as a viability cost of sexual selection in natural populations of mammals”. Science 300:55

    Article  CAS  Google Scholar 

  • Zuk M (2009) The sicker sex. PLoS Pathog 5:e1000267

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank two anonymous referees for their helpful comments. This is publication no. 758 of the Mitrani Department of Desert Ecology. A. Ribas was partially supported by “Generalitat de Catalunya” 2009SGR403. JGB is presently a postdoctoral fellow with FWO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Morand.

Additional information

Communicated by Janne Sundell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordes, F., Ponlet, N., de Bellocq, J.G. et al. Is there sex-biased resistance and tolerance in Mediterranean wood mouse (Apodemus sylvaticus) populations facing multiple helminth infections?. Oecologia 170, 123–135 (2012). https://doi.org/10.1007/s00442-012-2300-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2300-5

Keywords

Navigation