Skip to main content

Advertisement

Log in

Sex-biased parasitism, seasonality and sexual size dimorphism in desert rodents

  • Population Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

We investigated seasonality of gender differences in the patterns of flea infestation in nine rodent species to test if sex-biased parasitism in terms of mean abundance, species richness, prevalence and the level of aggregation (a) varies among hosts and between seasons, and (b) is linked to sexual size dimorphism. Sexual size differences were significant in both summer and winter in Acomys cahirinus, Gerbillus pyramidum and Meriones crassus, and in winter only in Acomys russatus, Gerbillus dasyurus, Gerbillus nanus and Sekeetamys calurus. Sexual size dimorphism was male biased except for A. russatus in which it was female biased. Manifestation of sexual differences in flea infestation was different among hosts between seasons. A significant effect of sex on mean flea abundance was found in six hosts, on mean flea species richness in five hosts and on prevalence in two hosts. Male-biased parasitism was found in summer in one host only and in winter in five hosts. Female-biased parasitism occurred in winter in A. russatus. Gender differences in the slopes of the regressions of log-transformed variances against log-transformed mean abundances occurred in three hosts. No relationship was found between sexual size dimorphism and any parasitological parameter in any season using both conventional regressions and the method of independent contrasts. Our results suggest that sex-biased parasitism is a complicated phenomenon that involves several different mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson RM, May RM (1978) Regulation and stability of host–parasite population interactions. I. Regulatory processes. J Anim Ecol 47:219–247

    Article  Google Scholar 

  • Anderson RM, Gordon DM (1982) Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortality. Parasitology 85:373–398

    PubMed  Google Scholar 

  • Behnke JM, Harris PD, Bajer A, Barnard CJ, Sherif N, Cliffe L, Hurst J, Lamb M, Rhodes A, James M, Clifford S, Gilbert FS, Zalat S (2004) Variation in the helminth community structure in spiny mice (Acomys dimidiatus) from four montane wadis in the St Katherine region of the Sinai Peninsula in Egypt. Parasitology 129:379–398

    Article  PubMed  CAS  Google Scholar 

  • Bronson FH (1989) Mammalian reproductive biology. University of Chicago Press, Chicago

    Google Scholar 

  • Bronson FH, Desjardins C (1971) Steroid hormones and aggressive behavior in mammals. In: Eleftheriou BE, Scott JP (eds) Physiology of aggression and defeat. Plenum, NY, pp 43–63

    Google Scholar 

  • Castro JM, Nolan V Jr, Ketterson ED (2001) Steroid hormones and immune function: experimental studies in wild and captive dark-eyed juncos (Junco hyemalis). Am Nat 157:408–420

    Article  Google Scholar 

  • Combes C (2001) Parasitism. The ecology and evolution of intimate interactions. University of Chicago Press, Chicago

    Google Scholar 

  • Daly M, Daly S (1975) Socio-ecology of Saharan gerbils, especially Meriones libycus. Mammalia 39:289–312

    Google Scholar 

  • Drobney RD, Train CT, Gredrickson LH (1983) Dynamics of the platherminth fauna of wood ducks in relation to food habits and reproductive state. J Parasitol 69:375–380

    Article  PubMed  CAS  Google Scholar 

  • Eiseman CH, Binnengton KC (1994) The peritrophic membrane—its formation, structure, chemical-composition and permeability in relation to vaccination against ectoparasitic arthropods. Int J Parasitol 24:15–26

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Folstad I, Karter AJ (1992) Parasites, bright males, and the immunocompetence handicap. Am Nat 139:603–622

    Article  Google Scholar 

  • Gallivan GJ, Horak IG (1997) Body size and habitat as determinants of tick infestations of wild ungulates in South Africa. S Afr J Wildl Res 27:63–70

    Google Scholar 

  • Greene WK, Carnegie RL, Shaw SE, Thompson RCA, Penhale WJ (1993) Characterization of allergens of the cat flea, Ctenocephalides felis: detection and frequency of IgE antibodies in canine sera. Parasite Immunol 15:69–74

    Article  PubMed  CAS  Google Scholar 

  • Gromov VS, Krasnov BR, Shenbrot GI (2000) Space use in Wagner’s gerbil Gerbillus dasyurus (Wagner, 1842) in the Negev Highlands, Israel. Acta Theriol 45:175–182

    Google Scholar 

  • Gromov VS, Krasnov BR, Shenbrot GI (2001) Behavioural correlates of spatial distribution in Wagner’s gerbil Gerbillus dasyurus (Rodentia, Gerbillinae). Mammalia 65:111–120

    Google Scholar 

  • Guégan J-F, Morand S, Poulin R (2005) Are there general laws in parasite community ecology? The emergence of spatial parasitology and epidemiology. In: Thomas F, Guégan JF, Renaud F (eds) Parasitism and ecosystems. Oxford University Press, Oxford, pp 22–42

    Chapter  Google Scholar 

  • Heath AW, Arfsten A, Yamanaka M, Dryden MW, Dale B (1994) Vaccination against the cat flea Ctenocephalides felis felis. Parasite Immunol 16:187–191

    Article  PubMed  CAS  Google Scholar 

  • Heske EJ, Shenbrot GI, Rogovin KA (1995) Spatial organization of Stylodipus telum (Dipodidae, Rodentia) in Dagestan, Russia. J Mammal 76:800–808

    Article  Google Scholar 

  • Hillgarth N, Wingfield JC (1997) Parasite-mediated sexual selection: endocrine aspects. In: Clayton DH, Moore J (eds) Host–parasite evolution: general principles and avian models. Oxford University Press, Oxford, pp 78–104

    Google Scholar 

  • Hughes VL, Randolph SE (2001) Testosterone depresses innate and acquired resistance to ticks in natural rodent hosts: a force for aggregated distributions of parasites. J Parasitol 87:49–54

    PubMed  CAS  Google Scholar 

  • Khokhlova IS, Krasnov BR, Shenbrot GI, Degen AA (2001) Body mass and environment: a study in Negev rodents. Isr J Zool 47:1–14

    Article  Google Scholar 

  • Khokhlova IS, Spinu M, Krasnov BR, Degen AA (2004a) Immune response to fleas in a wild desert rodent: effect of parasite species, parasite burden, sex of host and host parasitological experience. J Exp Biol 207:2725–2733

    Article  PubMed  Google Scholar 

  • Khokhlova IS, Spinu M, Krasnov BR, Degen AA (2004b) Immune responses to fleas in two rodent species differing in natural prevalence of infestation and diversity of flea assemblages. Parasitol Res 94:304–311

    Article  PubMed  Google Scholar 

  • Klein SL, Nelson RJ (1998a) Sex and species differences in cell-mediated immune responses in voles. Can J Zool 76:1394–1398

    Article  Google Scholar 

  • Klein SL, Nelson RJ (1998b) Adaptive immune responses are linked to the mating system of arvicoline rodents. Am Nat 151:59–67

    Article  CAS  PubMed  Google Scholar 

  • Korpimaki E, Tolonen P, Bennett GF (1995) Blood parasites, sexual selection and reproductive success of European kestrels. Ecoscience 2:335–343

    Google Scholar 

  • Kortet R, Taskinen J, Sinisalo T, Jokinen I (2003) Breeding-related seasonal changes in immunocompetence, health state and condition of the cyprinid fish, Rutilus rutilus L. Biol J Linn Soc 78:117–127

    Article  Google Scholar 

  • Krasnov BR, Khokhlova IS (2001) The effect of behavioural interactions on the exchange of flea (Siphonaptera) between two rodent species. J Vector Ecol 26:181–190

    PubMed  CAS  Google Scholar 

  • Krasnov BR, Shenbrot GI, Khokhlova IS, Degen AA, Rogovin KA (1996) On the biology of Sundevall’s jird (Meriones crassus Sundevall) in Negev Highlands, Israel. Mammalia 60:375–391

    Google Scholar 

  • Krasnov BR, Shenbrot GI, Medvedev SG, Vatschenok VS, Khokhlova IS (1997) Host-habitat relation as an important determinant of spatial distribution of flea assemblages (Siphonaptera) on rodents in the Negev Desert. Parasitology 114:159–173

    Article  PubMed  Google Scholar 

  • Krasnov BR, Hastriter M, Medvedev SG, Shenbrot GI, Khokhlova IS, Vaschenok VS (1999) Additional records of fleas (Siphonaptera) on wild rodents in the southern part of Israel. Isr J Zool 45:333–340

    Google Scholar 

  • Krasnov BR, Burdelova NV, Shenbrot GI, Khokhlova IS (2002) Annual cycles of four flea species (Siphonaptera) in the central Negev desert. Med Vet Entomol 16:266–276

    Article  PubMed  CAS  Google Scholar 

  • Krasnov BR, Shenbrot GI, Khokhlova IS, Degen AA (2004) Flea species richness and parameters of host body, host geography and host “milieu”. J Anim Ecol 73:1121–1128

    Article  Google Scholar 

  • Lee CY, Alexander PS, Yang VVC, Yu JYL (2001) Seasonal reproductive activity of male formosan wood mice (Apodemus semotus): relationships to androgen levels. J Mammal 82:700–708

    Article  Google Scholar 

  • Lott DF (1991) Intraspecific variation in the social systems of wild vertebrates. Cambridge University Press, Cambridge

    Google Scholar 

  • Maddison WP, Maddison DR (2004) Mesquite: a modular system for evolutionary analysis. Version 1.05. http://mesquiteproject.org

  • Madhavi R, Anderson RM (1985) Variability in the susceptibility of the fish host, Poecilia reticulata, to infection with Gyrodactylus bullatarudis (Monogenea). Parasitology 91:531–544

    Google Scholar 

  • Midford PE, Garland T Jr, Maddison W (2004) PDAP:PDTREE package for Mesquite,version 1.05. http://mesquiteproject.org/pdap_mesquite/index.html

  • Møller AP, Erritzoe J, Saino N (2003) Seasonal changes in immune response and parasite impact on hosts. Am Nat 161:657–671

    Article  PubMed  Google Scholar 

  • Moore SL, Wilson K (2002) Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297:2015–2018

    Article  PubMed  CAS  Google Scholar 

  • Mooring MS, Blumstein DT, Stoner CJ (2004) The evolution of parasite-defence grooming in ungulates. Biol J Linn Soc 81:17–37

    Article  Google Scholar 

  • Morales-Montor J, Chavarria A, De Leon MA, Del Castillo LI, Escobedo EG, Sanchez EN, Vargas JA, Hernandez-Flores M, Romo-Gonzalez T, Larralde C (2004) Host gender in parasitic infections of mammals: an evaluation of the females host supremacy paradigm. J Parasitol 90:531–546

    Article  PubMed  CAS  Google Scholar 

  • Morand S, Guegan J-F (2000) Distribution and abundance of parasite nematodes: ecological specialization, phylogenetic constraints or simply epidemiology? Oikos 88:563–573

    Article  Google Scholar 

  • Morand S, Pointier J-P, Borel G, Theron A (1993) Pairing probability of schistosomes related to their distribution among the host population. Ecology 74:2444–2449

    Article  Google Scholar 

  • Morand S, Gouy De Bellocq J, Stanko M, Miklisova D (2004) Is sex-biased ectoparasitism related to sexual size dimorphism in small mammals of Central Europe? Parasitology 129:505–510

    Article  PubMed  CAS  Google Scholar 

  • Moura MO, Bordignon M, Graciolli G (2003) Host characteristics do not affect community structure of ectoparasites on the fishing bat Noctilio leporinus (L., 1758) (Mammalia: Chiroptera). Mem Inst Oswaldo Cruz 98:811–815

    PubMed  Google Scholar 

  • Olsen NJ, Kovacs WJ (1996) Gonadal steroids and immunity. Endocrine Rev 17:369–384

    Article  CAS  Google Scholar 

  • Ovadia O, Dohna HZ (2003) The effect of intra- and interspecific aggression on patch residence time in Negev Desert gerbils: a competing risk analysis. Behav Ecol 14:583–591

    Article  Google Scholar 

  • Perry JN (1988) Some models for spatial variability of animal species. Oikos 51:124–130

    Article  Google Scholar 

  • Perry JN, Taylor LR (1986) Stability of real interacting populations in space and time: implications, alternatives and negative binomial k c . J Anim Ecol 55:1053–1068

    Article  Google Scholar 

  • Poulin R (1996) Sexual inequalities in helminth infections: a cost of being male? Am Nat 147:289–295

    Article  Google Scholar 

  • Poulin R (1998) Evolutionary ecology of parasites. From individuals to communities. Chapman-Hall, London

    Google Scholar 

  • Promislow DEL (1992) Costs of sexual selection in natural populations of mammals. Proc R Soc Lond B 247:203–210

    Article  Google Scholar 

  • Randolph SE (1977) Changing spatial relationships in a population of Apodemus sylvaticus with the onset of breeding. J Anim Ecol 46:653–676

    Article  Google Scholar 

  • Razzoli M, Cushing BS, Carter CS, Valsecchi P (2003) Hormonal regulation of agonistic and affiliative behavior in female mongolian gerbils (Meriones unguiculatus). Hormones Behav 43:549–553

    Article  CAS  Google Scholar 

  • Rolff J (2002) Bateman’s principle and immunity. Proc R Soc Lond B 269:867–872

    Article  Google Scholar 

  • Rossin A, Malizia AI (2002) Relationship between helminth parasites and demographic attributes of a population of the subterranean rodent Ctenomys talarum (Rodentia: Octodontidae). J Parasitol 88:1268–1270

    PubMed  CAS  Google Scholar 

  • Rozenfeld FM, Rasmont R, Haim A (1994) Home site scent marking with urine and an oral secretion in the golden spiny mouse (Acomys russatus). Isr J Zool 40:161–172

    Google Scholar 

  • Schalk G, Forbes MR (1997) Male biases in parasitism of mammals: effects of study type, host age, and parasite taxon. Oikos 78:67–74

    Article  Google Scholar 

  • Schmid-Hempel P (2003) Variation in immune defence as a question of evolutionary ecology. Proc R Soc Lond B 270:357–366

    Article  Google Scholar 

  • Shargal E, Kronfeld-Schor N, Dayan T (2000) Population biology and spatial relationships of coexisting spiny mice (Acomys) in Israel. J Mammal 81:1046–1052

    Article  Google Scholar 

  • Shaw DJ, Dobson AP (1995) Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111:S111–S127

    Article  PubMed  Google Scholar 

  • Shenbrot GI, Krasnov BR (2001) Rodents in desert environment: is density dynamics really correlated with annual rainfall fluctuations? In: Prakash I (ed) Ecology of desert environments. Festschrift for professor J.L.Cloudsley-Thompson. Scientific Publishers, Jodhpur, pp 405–421

    Google Scholar 

  • Shenbrot GI, Krasnov BR, Khokhlova IS (1994) On the biology of Gerbillus henleyi (Rodentia: Gerbillidae) in the Negev Highlands, Israel. Mammalia 58:581–589

    Article  Google Scholar 

  • Shenbrot GI, Krasnov BR, Khokhlova IS (1997) On the biology of Wagner’s gerbil (Gerbillus dasyurus (Wagner, 1842) (Rodentia: Gerbillidae) in the Negev Highlands, Israel. Mammalia 61:467–486

    Google Scholar 

  • Shenbrot GI, Krasnov BR, Khokhlova IS (1999) Notes on the biology of the bushy-tailed jird, Sekeetamys calurus, in the central Negev, Israel. Mammalia 63:374–377

    Google Scholar 

  • Simkova A, Kadlec D, Gelnar M, Morand S (2002) Abundance-prevalence relationship of gill congeneric ectoparasites: testing the core satellite hypothesis and ecological specialization. Parasitol Res 88:682–686

    Article  PubMed  Google Scholar 

  • Soliman S, Marzouk AS, Main AJ, Montasser AA (2001) Effect of sex, size, and age of commensal rat hosts on the infestation parameters of their ectoparasites in a rural area of Egypt. J Parasitol 87:1307–1316

    Google Scholar 

  • Taylor LR (1961) Aggregation, variance and the mean. Nature 189:732–735

    Article  Google Scholar 

  • Taylor LR, Taylor RAJ (1977) Aggregation, migration and population dynamics. Nature 265:415–421

    Article  PubMed  CAS  Google Scholar 

  • Taylor LR, Woiwod IP (1980) Temporal stability as a density-dependent species characteristic. J Anim Ecol 49:209–224

    Article  Google Scholar 

  • Vainikka A, Jokinen EI, Kortet R, Taskinen J (2004) Gender- and season-dependent relationships between testosterone, oestradiol and immune functions in wild roach. J Fish Biol 64:227–240

    Article  CAS  Google Scholar 

  • Vatschenok VS (1988) Fleas—vectors of pathogens causing diseases in humans and animals (in Russian). Nauka Publ House, Leningrad

    Google Scholar 

  • Zar JH (1994) Biostatistical analysis, 2nd edn. Prentice-Hall, London

    Google Scholar 

  • Zuk M (1996) Disease, endocrine–immune interactions, and sexual selection. Ecology 77:1037–1042

    Article  Google Scholar 

  • Zuk M, McKean KA (1996) Sex differences in parasite infections: patterns and processes. Int J Parasitol 26:1009–1024

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Allan Degen and three anonymous referees for helpful comments on the earlier draft of the manuscript. This study was partly supported by the Israel Science Foundation (Grant no. 249/04 to B.R.K., G. I. S. & I.S.K.). This is publication no. 187 of the Ramon Science Center and no. 491 of the Mitrani Department of Desert Ecology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris R. Krasnov.

Additional information

Communicated by Hannu Ylonen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasnov, B.R., Morand, S., Hawlena, H. et al. Sex-biased parasitism, seasonality and sexual size dimorphism in desert rodents. Oecologia 146, 209–217 (2005). https://doi.org/10.1007/s00442-005-0189-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-005-0189-y

Keywords

Navigation