Skip to main content
Log in

Summer temperature dependency of larch budmoth outbreaks revealed by Alpine tree-ring isotope chronologies

  • Global Change Ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Larch budmoth (LBM, Zeiraphera diniana Gn.) outbreaks cause discernable physical alteration of cell growth in tree rings of host subalpine larch (Larix decidua Mill.) in the European Alps. However, it is not clear if these outbreaks also impact isotopic signatures in tree-ring cellulose, thereby masking climatic signals. We compared LBM outbreak events in stable carbon and oxygen isotope chronologies of larch and their corresponding tree-ring widths from two high-elevation sites (1800–2200 m a.s.l.) in the Swiss Alps for the period AD 1900–2004 against isotope data obtained from non-host spruce (Picea abies). At each site, two age classes of tree individuals (150–250 and 450–550 years old) were sampled. Inclusion of the latter age class enabled one chronology to be extended back to AD 1650, and a comparison with long-term monthly resolved temperature data. Within the constraints of this local study, we found that: (1) isotopic ratios in tree rings of larch provide a strong and consistent climatic signal of temperature; (2) at all sites the isotope signatures were not disturbed by LBM outbreaks, as shown, for example, by exceptionally high significant correlations between non-host spruce and host larch chronologies; (3) below-average July to August temperatures and LBM defoliation events have been coupled for more than three centuries. Dampening of Alps-wide LBM cyclicity since the 1980s and the coincidence of recently absent cool summers in the European Alps reinforce the assumption of a strong coherence between summer temperatures and LBM defoliation events. Our results demonstrate that stable isotopes in tree-ring cellulose of larch are an excellent climate proxy enabling the analysis of climate-driven changes of LBM cycles in the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams JB, Mann ME, Ammann CM (2003) Proxy evidence for an El Nino-like response to volcanic forcing. Nature 426:274–278. doi:10.1038/nature02101

    Article  CAS  Google Scholar 

  • Anderson RM, May RM (1980) Infectious-diseases and population-cycles of forest insects. Science 210:658–661. doi:10.1126/science.210.4470.658

    Article  PubMed  Google Scholar 

  • Anderson WT, Bernasconi SM, McKenzie JA, Saurer M (1998) Oxygen and carbon isotopic record of climatic variability in tree ring cellulose (Picea abies): an example from central Switzerland (1913–1995). J Geophys Res 103:31625–31636. doi:10.1029/1998JD200040

    Article  Google Scholar 

  • Asshoff R, Hattenschwiler S (2006) Changes in needle quality and larch bud moth performance in response to CO2 enrichment and defoliation of treeline larches. Ecol Entomol 31:84–90. doi:10.1111/j.0307-6946.2006.00756.x

    Article  Google Scholar 

  • Auer I, Boehm R, Jurkovic A, Orlik A et al (2007) HISTALP—historical instrumental climatological surface time series of the greater Alpine region. Int J Climatol 27:17–46. doi:10.1002/joe.1377

    Google Scholar 

  • Baltensweiler W (1993a) A contribution to the explanation of the larch bud moth cycle, the polymorphic fitness hypothesis. Oecologia 93:251–255. doi:10.1007/BF00317678

    Article  Google Scholar 

  • Baltensweiler W (1993b) Why the larch bud moth cycle collapsed in the subalpine larch-cembran pine forests in the year 1990 for the first time since 1850. Oecologia 94:62–66. doi:10.1007/00317302

    Article  Google Scholar 

  • Baltensweiler W, Rubli D (1999) Dispersal: an important driving force of the cycling population dynamics of the larch budmoth, Zeiraphera diniana Gn. In: Swiss Federal Institute for Forest Snow and Landscape Research (ed) Forest snow and landscape research, vol 74. Paul Haupt, Berne, p 153

  • Baltensweiler W, Benz G, Bovey P, Delucchi V (1977) Dynamics of larch bud moth populations. Annu Rev Entomol 22:79–100. doi:10.1146/annurev.en.22.010177

    Article  Google Scholar 

  • Baltensweiler W, Weber UM, Cherubini P (2008) Tracing the influence of larch-bud-moth insect outbreaks and weather conditions on larch tree-ring growth in Engadine (Switzerland). Oikos 117:161–172. doi:10.1111/j.2007.0030-1299.16117.x

    Article  Google Scholar 

  • Barbour MM, Roden JS, Farquhar GD, Ehleringer JR (2004) Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a Peclet effect. Oecologia 138:426–435. doi:10.1007/s00442-003-1449-3

    Article  PubMed  Google Scholar 

  • Berryman AA (1996) What causes population cycles of forest Lepidoptera? Trends Ecol Evol 11:28–32. doi:10.1016/0169-5347(96)81066-4

    Article  Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311. doi:10.1016/j.cageo.2003.11.004

    Article  Google Scholar 

  • Boettger T, Haupt M, Knöller K, Weise SM, Waterhouse JS et al (2007) Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O and nonexchangeable δ2H values in cellulose, sugar, and starch: an interlaboratory comparison. Anal Chem 79:4603–4612. doi:10.1021/ac0700023

    Google Scholar 

  • Büntgen U, Esper J, Frank DC, Nicolussi K, Schmidhalter M (2005) A 1052-year tree-ring proxy for Alpine summer temperatures. Clim Dyn 25:141–153. doi:10.1007/s00382-005-0028-1

    Article  Google Scholar 

  • Büntgen U, Bellwald I, Kalbermatten H, Schmidhalter M, Frank D, Freund H, Bellwald W, Neuwirth B, Nüsser M, Esper J (2006a) 700 years of settlement and building history in the Lötschental/Valais. Erdkunde 60:96–112

  • Büntgen U, Frank DC, Niervergelt D, Esper J (2006b) Summer temperature variations in the European Alps, AD 755–2004. J Clim 19:5606–5623. doi:10.1175/JCLI3917.1

    Article  Google Scholar 

  • Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880. doi:10.1002/joc.1216

    Article  Google Scholar 

  • Ellsworth DS, Tyree MT, Parker BL, Skinner M (1994) Photosynthesis and water-use efficiency of sugar maple (Acer-Saccharum) in relation to pear thrips defoliation. Tree Physiol 14:619–632

    PubMed  Google Scholar 

  • Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253. doi:10.1126/science.1066208

    Article  PubMed  CAS  Google Scholar 

  • Esper J, Büntgen U, Frank DC, Niervergelt D, Liebhold A (2007) 1200 years of regular outbreaks in alpine insects. Proc R Soc Lond B Biol Sci 274:671–679. doi:10.1098/rspb.2006.0191

    Article  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  CAS  Google Scholar 

  • Fischlin A (1982) Analyse eines Wald-Insekten-Systems: Der Subalpine Lärchen-Arvenwald un der Graue Lärchenwickler Zeiraphera diniana Gn. (Lepidoptera, Tortricidae). PhD thesis (number 6977). ETH, Zürich

  • Frank D, Esper J (2005) Temperature reconstructions and comparisons with instrumental data from a tree-ring network for the European Alps. Int J Climatol 25:1437–1454

    Google Scholar 

  • Guiot J (1991) The bootstrapped response function. Tree Ring Bull 51:39–41

    Google Scholar 

  • Haavik LJ, Stephen FM, Fierke MK, Salisbury VB, Leavitt SW, Billings SA (2008) Dendrochronological parameters of northern red oak (Quercus rubra L. (Fagaceae)) infested with red oak borer (Enaphalodes rufulus (Haldeman) (Coleoptera: Cerambycidae)). For Ecol Manage 255:1501–1509. doi:10.1016/j.foreco.2007.11.005

    Article  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurements. Tree Ring Bull 43:69–78

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Keel SG, Siegwolf RTW, Körner C (2006) Canopy CO2 enrichment permits tracing the fate of recently assimilated carbon in a mature deciduous forest. New Phytol 172:319–329. doi:10.1111/j.1469-8137.2006.01831.x

    Article  PubMed  CAS  Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732. doi:10.1111/j.1365-2699.2003.01043.x

    Google Scholar 

  • Kurz WA et al (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990. doi:10.1038/nature06777

    Article  PubMed  CAS  Google Scholar 

  • Leavitt SW, Long A (1986) Influence of site disturbance on δ13C isotopic time series from tree rings. In: Jacoby GC, Hornbeck JW (eds) Proc Int Symp Ecol Aspects Tree-ring Analysis. Marymount College, Tarrytown

    Google Scholar 

  • Leavitt SW, Long A (1988) Stable carbon isotope chronologies from trees in the Southwestern United States. Glob Biogeochem Cycles 2:189–198

    Article  CAS  Google Scholar 

  • Leuenberger M (2007) To what extent can ice core data contribute to the understanding of plant ecological developments of the past? In: Dawson TE, Siegwolf RTW (eds) Stable isotopes as indicators of ecological change. Elsevier Academic Press, London, pp 211–233

    Chapter  Google Scholar 

  • Mattson WJ, Addy ND (1975) Phytophagous insects as regulators of forest primary production. Science 190:515–522

    Google Scholar 

  • McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801. doi:10.1016/j.quascirev.2003.06.017

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Reynolds-Henne CE, Siegwolf RTW, Treydte KS, Esper J, Henne S, Saurer M (2007) Temporal stability of climate–isotope relationships in tree rings of oak and pine (Ticino, Switzerland). Glob Biogeochem Cycles 21:GB4009. doi:0.1029/2007GB002945

    Article  CAS  Google Scholar 

  • Roden JS, Lin G, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim Cosmochim Acta 64:21–35. doi:10.1016/S0016-7037(99)00195-7

    Article  CAS  Google Scholar 

  • Rolland C, Baltensweiler W, Petitcolas V (2001) The potential for using Larix decidua ring widths in reconstructions of larch budmoth (Zeiraphera diniana) outbreak history: dendrochronological estimates compared with insect surveys. Trees Struct Funct 15:414–424. doi:10.1007/s004680100116

    Google Scholar 

  • Saurer M, Siegwolf R (2004) Pyrolysis techniques for oxygen isotope analysis of cellulose. In: de Groot PA (ed) Handbook of stable isotope analytical techniques, vol 1. Elsevier, New York, pp 497–508

    Chapter  Google Scholar 

  • Saurer M, Cherubini P, Reynolds-Henne CE, Treydte KS, Anderson WT, Siegwolf RTW (2008) An investigation of the common signal in tree-ring stable isotope chronologies at temperate sites. J Geophys Res 113:G04035. doi:10.1029/2008JG000689

  • Schweingruber FH (1985) Dendroecological zones in the coniferous forests of Europe. Dendrochronologia 3:67–75

    Google Scholar 

  • Schweingruber FH, Eckstein D, Serre-Bachet F, Bräker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8:9–38

    Google Scholar 

  • Simard S, Elhani S, Morin H, Krause C, Cherubini P (2008) Carbon and oxygen stable isotopes from tree-rings to identify spruce budworm outbreaks in the boreal forest of Québec. Chem Geol 252:80–87. doi:10.1016/j.chemgeo.2008.01.018

    Article  CAS  Google Scholar 

  • Stahel W (2002) Statistische Datenanalyse: Eine Einführung für Naturwissenschaftler, 4th edn. Vieweg, Wiesbaden

    Google Scholar 

  • Stokes MA, Smiley TL (1968) An introduction to tree-ring dating (reprinted 1996). University of Arizona Press, Tucson

  • Treydte KS, Schleser GH, Schweingruber FH, Winiger M (2001) The climatic significance of δ13C in subalpine spruces (Lötschental, Swiss Alps). Tellus B Chem Phys Meteorol 53:593–611. doi:10.1034/j.1600-0889.2001.530505.x

    Google Scholar 

  • Treydte K, Frank D, Esper J, Andreu L, Bednarz Z, Berninger F, Boettger T et al (2007) Signal strength and climate calibration of a European tree-ring isotope network. Geophys Res Lett 34:L24302. doi:10.1029/2007GL031106

  • Turchin P, Wood SN, Ellner SP, Kendall BE, Murdoch WW et al (2003) Dynamical effects of plant quality and parasitism on population cycles of larch budmoth. Ecology 84:1207–1214. doi:10.1890/0012-9658(2003)084[1207:DEOPQA]2.0.CO;2

  • Visser ME, Holleman LJM (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc R Soc Lond B Biol Sci 268:289–294. doi:10.1098/rspb.2000.1363

    Article  CAS  Google Scholar 

  • Weber UM (1997) Dendroecological reconstruction and interpretation of larch budmoth (Zeiraphera diniana) outbreaks in two central alpine valleys of Switzerland from 1470–1990. Trees Struct Funct 11:277–290. doi:10.1007/PL00009674

    Google Scholar 

  • Weidner K, Helle G, Löffler J, Neuwirth B, Schleser GH (2006) Stable isotope and tree-ring width variations of larch affected by larch budmoth outbreaks. In: Haneca K, Verheyden A, Beeckman H, Gärtner H, Helle G, Schleser GH (eds) TRACE—tree rings in archaeology, climatology and ecology, vol 5. FZ Jülich, Jülich, pp 148–153

    Google Scholar 

  • Yakir D, DeNiro MJ, Ephrath JE (1990) Effects of water-stress on oxygen, hydrogen and carbon isotope ratios in two species of cotton plants. Plant Cell Environ 13:949–955. doi:10.1111/j.1365-3040.1990.tb01985.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the EU project FP6-2004-GLOBAL-017008-2 (MILLENNIUM). Thanks to A. Verstege and D. Nievergelt for support in the Dendro-LAB, to M. Tröndle and L. Läubli for assistance with sample preparation and to G. Helle for the oxygen measurements of the spruce samples. Many thanks also to U. Baltensperger and D. McCarroll for the valuable discussions and helpful comments. The experiments comply with the current laws in Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Saurer.

Additional information

Communicated by Jim Ehleringer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kress, A., Saurer, M., Büntgen, U. et al. Summer temperature dependency of larch budmoth outbreaks revealed by Alpine tree-ring isotope chronologies. Oecologia 160, 353–365 (2009). https://doi.org/10.1007/s00442-009-1290-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-009-1290-4

Keywords

Navigation