Skip to main content
Log in

Impact of floral traits on the reproductive success of epiphytic and terrestrial tropical orchids

  • Plant Animal Interactions - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

We investigated the relationship between habit, population size, floral traits and natural fruit set levels of 23 tropical orchid species of south-east Bangladesh. We showed that epiphytic orchids had lower fruit set levels than terrestrial species and that habit explained much of the variation in floral traits among the orchids. We compared our results with data from 76 other species occurring in the study area and hypothesize that a suite of floral and population characteristics present in tropical orchids combine in epiphytes to reduce their reproductive success. Characteristics which, in addition to their habit, are associated with low reproductive success are small population size, small inflorescences, non-sectile pollinia and self-incompatibility. Several of these characteristics were phylogenetically conserved and we predict that epiphytes might therefore generally have lower fruit set levels than recorded in terrestrial species. Nectar rewards are uncommon in tropical orchids and nectarless species have displays of larger flowers, which may represent an adaptation to increase pollinator attraction, although other rewards such as oils, waxes and pseudo pollen may replace nectar. We suggest that, like many temperate orchids, a high proportion of tropical orchids may lack floral rewards and be pollinated by deceit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a, b
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackerman JD (1986) Coping with the epiphytic existence: pollination strategies. Selbyana 9:52–60

    Google Scholar 

  • Ackerman JD (1989) Limitations to sexual reproduction in Encyclia krugii (Orchidaceae). Syst Bot 14:101–109

    Article  Google Scholar 

  • Ackerman JD, Oliver JCM (1985) Reproductive biology of Oncidium variegatum: moon phases, pollination and fruit set. Am Orchid Soc Bull 54:326–329

    Google Scholar 

  • Ackerman JD, Zimmerman JK (1994) Bottlenecks in the life histories of orchids: resources, pollination, population structure, and seedlings establishment. In: Pridgeon AM (ed) Proceedings of the 14th World Orchid Conference. HMSO, Edinburgh, pp 138–147

  • Ackerman JD, Montalvo AM (1990) Short- and long-term limitations to fruit production in a tropical orchid. Ecology 71:263–272

    Article  Google Scholar 

  • Agnew JD (1986) Self compatibility/incompatibility in some orchids of the subfamily Vandoideae. Plant Breed 97:183–186

    Article  Google Scholar 

  • Agren J (1996) Population size, pollination limitation, and seed set in the self incompatible herb Lythrum salicaria. Ecology 77:1779–1790

    Article  Google Scholar 

  • Ahmed M (1991) A taxonomic study of the family Orchidaceae from Bangladesh. MPhil thesis, Department of Botany, University of Chittagong, Bangladesh

  • Andel JV, Vera F (1977) Reproductive allocation in Senecio sylvaticus and Chamaenerion angustifolium in relation to mineral nutrition. J Ecol 65:747–758

    Article  Google Scholar 

  • Arditti J (1976) Post-pollination phenomena in orchid flowers. In: Proceedings of the 8th World Orchid Conference, Palmgarten, Frankfurt. German Orchid Society, pp 528–533

  • Benzing DH (1990) Vascular epiphytes: general biology and related biota. Cambridge University Press, Cambridge

    Google Scholar 

  • Biercychudek P (1981) Pollinator limitation of plant reproduction effort. Am Nat 117:838–840

    Article  Google Scholar 

  • Borba EL, Semir J, Shepherd GJ (2001) Self incompatibility, inbreeding depression and crossing potential in five Brazilian Pleurothalis (Orchidaceae) species. Ann Bot 88:89–99

    Article  Google Scholar 

  • Bose TK, Bhattacharjee SK, Das P, Basak UC (1999) Orchids of India. Naya Prokash, Calcutta, p 487

    Google Scholar 

  • Burd M (1994) Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set. Bot Rev 60:83–139

    Google Scholar 

  • Calder DH, Adams PB, Slater AT (1982) The biology and breeding system of Dendrobium speciosum Sm. In: Williams EG, Knox RB, Bernhardt P (eds) Pollination, vol 82. Melbourne University, Melbourne, pp 184–191

    Google Scholar 

  • Calvo RN (1990) Inflorescence size and fruit distribution among individuals of three orchid species. Am J Bot 77:1378–1381

    Article  Google Scholar 

  • Chowdhery HJ (1998) Orchid flora of Arunachal Pradesh. Bishen Singh Mahaendra Pal Singh, Dehra Dun, India, p 824

    Google Scholar 

  • Chung MY, Chung MG (2005) Pollination biology and breeding systems in the terrestrial orchid Bletilla striata. Plant Syst Evol 252:1–9

    Article  Google Scholar 

  • Clayton S, Aizen MA (1996) Effects of pollinia removal and insertation on flower longevity in Chloraea alpina (Orchidaceae). Evol Ecol 10(6):653–660

    Article  Google Scholar 

  • Clifford SC (1988) Post pollination phenomena and embryo development in the Oncidiinae (Orchidaceae). In: Cresti M, Gori P, Pacini E (eds) Proceedings of the 10th International Symposium on the Sexual Reproduction in Higher Plants. Programme and abstracts: 29. Springer, Berlin

  • Cresswell JE, Galen C (1991) Frequency-dependent selection and adaptive surfaces for floral character combinations: the pollination of Polemonium viscosum. Am Nat 138:1342–1353

    Article  Google Scholar 

  • Dafni A, Woodell SRJ (1986) Stigmatic exudates and the pollination of Dactyorhiza fuchsia (Druce) Soo. Flora 178:343–350

    Google Scholar 

  • Darwin C (1885) The various contrivances by which orchids are fertilized by insects. Murray, London

    Google Scholar 

  • Dodson CH, Dressler RL, Hills HG, Adams RM, Williams NH (1969) Biologically active compounds in orchid fragrances. Science 164:1243–1249

    Article  PubMed  CAS  Google Scholar 

  • Dressler RL (1968) Observations on orchids and euglossine bees in Panama and Costa Rica. Rev Biol Trop 15:143–183

    Google Scholar 

  • Dressler RL (1993) Phylogeny and classification of the orchid family. Cambridge University Press, Cambridge

    Google Scholar 

  • Elliott CP, Ladd PG (2002) Pollen limitation of fruit set in Western Australian terrestrial orchids. J R Soc West Aust 85(4):165–168

    Google Scholar 

  • Firmage DH, Cole FR (1988) Reproductive success and inflorescence size of Calopogon tuberosus (Orchidaceae). Am J Bot 75(9):1371–1377

    Article  Google Scholar 

  • Flach A, Dondon RC, Singer RB, Koehler S, Amaral MDCE, Marsaioli AJ (2004) The chemistry of pollination in selected Brazilian Maxillariinae orchids: floral rewards and fragrance. J Chem Ecol 30(5):1045–1055

    Article  PubMed  CAS  Google Scholar 

  • Freudenstein JV, Rasmussen FN (1997) Sectile pollinia and relationships in the Orchidaceae. Plant Syst Evol 205(3–4):125–146

    Article  Google Scholar 

  • Garcia-Suarez MD, Rico-Gray V, Serrano H (2003) Distribution and abundance of Tillandsia spp. (Bromeliaceae) in the Zapotitlán Valley, Puebla, México. Plant Ecol 166:207–215

    Article  Google Scholar 

  • Gill DH (1989) Fruiting failure, pollinator efficiency and speciation in orchids. In: Otte D, Endler JA (eds) Speciation and its consequences. Sinauer, Sunderland, Mass., pp 456–481

    Google Scholar 

  • Harder LD (2000) Pollen dispersal and the floral diversity of monocotyledons. In: Wilson KL, Morrison D (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 243–257

    Google Scholar 

  • Heinig RL (1925) List of plants of Chittagong collectorate and Hill Tracts. Bengal Government Branch Press, Darjeeling, pp 68–70

  • Hooker JD (1888–1890) Flora of British India (Orchideae), vol 5. Reeve, Kent, pp 667–864

  • Hooker JD (1890) Flora of British India (Orchideae), vol 6. Reeve, Kent, pp 1–198

  • Huda MK, Rahman MA, Wilcock CC (1999) A preliminary checklist of orchid taxa occurring in Bangladesh. Bangladesh J Plant Taxon 6:69–85

    Google Scholar 

  • Huda MK (2000) Diversity, ecology, reproductive biology and conservation of orchids of south-east Bangladesh. PhD thesis, University of Aberdeen, UK

  • Hutchings MJ (1987) The population biology of the early spider orchid, Ophrys sphegodes Mill. I. A demographic study from 1975–1984. J Ecol 75:711–727

    Article  Google Scholar 

  • Jeraskova J, Kindlmann P (2004) Reproductive success and sex variation in nectarless and rewarding orchids. Int J Plant Sci 165(5):779–785

    Article  Google Scholar 

  • Johansen BO (1990) Incompatibility in Dendrobium (Orchidaceae). Bot J Linn Soc 103:165–196

    Article  Google Scholar 

  • Johnson SD, Edwards TJ (2000) The structure and function of orchid pollinaria. Plant Syst Evol 222:243–269

    Article  Google Scholar 

  • Johnson SD, Nilsson LA (1999) Pollen carryover, geitonogamy, and the evolution of deceptive pollination systems in orchids. Ecology 80(8):2607–2619

    Article  Google Scholar 

  • Johnson SD, Peter C, Nilsson LA, Agren J (2003) Pollination success in a deceptive orchid is enhanced by co-occurring rewarding in magnet plants. Ecology 84(11):2919–2927

    Article  Google Scholar 

  • Kaiser R (1993) The scent of orchids: olfactory and chemical investigations. Elsevier, Amsterdam

    Google Scholar 

  • Kindlmann P, Jersakova J (2006) Effect of floral display on reproductive success in terrestrial orchids. Folia Geobot 41:47–60

    Google Scholar 

  • Kjellson G, Ramussen FN, Dupuy D (1985) Pollination of Dendrobium infundibulum, Cymbidium insigne (Orchidaceae) and Rhododendron lyi (Ericaceae) by Bombus eximus (Apidae) in Thailand: a possible case of floral mimicry. J Trop Ecol 1:289–302

    Article  Google Scholar 

  • Kjellson G, Ramussen FN (1987) Does the pollination of Dendrobium unicum Seidenf. involve “pseudopollen”? Orchider 38:183–187

    Google Scholar 

  • Lehnebach CA, Robertson AW (2004) Pollination ecology of four epiphytic orchids of New Zealand. Ann Bot 93:773–781

    Article  PubMed  Google Scholar 

  • Leimu R, Syrjanen K (2002) Effects of population size, seed predation and plant size on male and female reproductive success in Vincetoxicum hirundinaria (Asclepiadaceae). Oikos 98:229–238

    Article  Google Scholar 

  • Levin DA, Brack ET (1995) Natural selection against white petals in Phlox. Evolution 49:1017–1022

    Article  Google Scholar 

  • Little KJ, Dieringer G, Romano M (2005) Pollination ecology, genetic diversity and selection on nectar spur length in Platanthera lacera (Orchidaceae). Plant Species Biol 20:183–190

    Google Scholar 

  • Madison M (1977) Vascular epiphytes: their systematic occurrence and salient features. Selbyana 2:1–13

    Google Scholar 

  • Montalvo AM, Ackerman JD (1987) Limitations to fruit production in Ionopsis utricularioides (Orchidaceae). Biotropica 19(1):24–31

    Article  Google Scholar 

  • Murren CJ, Ellison AM (1996) Effect of habitat, plant size and floral display size on male and female reproductive success of the Neotropical orchid Brassavola nodosa. Biotropica 28:30–41

    Article  Google Scholar 

  • Neiland MRM, Wilcock CC (1995) Maximisation of reproductive success by European Orchidaceae under conditions of infrequent pollination. Protoplasma 187:39–48

    Article  Google Scholar 

  • Neiland MRM, Wilcock CC (1998) Fruit set, nectar reward and rarity in the Orchidaceae. Am J Bot 85(12):1657–1671

    Article  Google Scholar 

  • Pacini E, Hesse M (2002) Types of pollen dispersal units in orchids, and their consequences for germination and fertilization. Ann Bot 89:653–664

    Article  PubMed  Google Scholar 

  • Padmawathe R, Qureshi Q, Rawat GS (2004) Effects of selective logging on vascular epiphyte diversity in a moist lowland forest of Eastern Himalaya, India. Biol Conserv 119:81–92

    Article  Google Scholar 

  • Parra-Tabla V, Vargas CF, Mangana-Rueda S, Navarro J (2000) Female and male pollination success of Oncidium ascendens Lindley (Orchidaceae) in two contrasting habitats: forest v/s agricultural field. Biol Conserv 94:335–340

    Article  Google Scholar 

  • Pijl LV, Dodson CH (1966) Orchid flowers, their pollination and evolution. University of Miami Press, Coral Gables, Fla.

    Google Scholar 

  • Prain D (1903) Bengal plants, vol 2. West Newman, London, pp 750–777

  • Proctor HC (1998) Effect of pollen age on fruit set, fruit weight, and seed set in three orchid species. Can J Bot 76(3):420–427

    Article  Google Scholar 

  • Rathcke BJ, Jules ES (1993) Habitat fragmentation and plant–pollinator interactions. Curr Sci 65:273–277

    Google Scholar 

  • Rodriguez-Robles JA, Melendez EJ, Ackerman JD (1992) Effects of display size, flowering phenology, and nectar availability on effective visitation frequency in Comparettia falcata (Orchidaceae). Am J Bot 79:1009–1017

    Article  Google Scholar 

  • Roxburgh W (1814) Hortus Bengalensis (Gynandra Monandra). Mission Press, Serampore, p 63

  • Roxburgh W (1832) Flora Indica (Gynandra Monandria), vol 2. Thacker, Calcutta, Parburry & Allen, London, pp :609–622

  • Santapau H, Kapadia Z (1966) The orchids of Bombay. Government Press of India,Calcutta, p 239

  • Schemske DW (1980) Evolution of floral display in the orchid Brassavola nodosa. Evolution 34:489–493

    Article  Google Scholar 

  • Schlising RA (1976) Reproductive proficiency in Paeonia californica (Paeoniaceae). Am J Bot 63:1095–1103

    Article  Google Scholar 

  • Sinclair J (1956) The Flora of Cox’s Bazar (Orchidaceae), East Pakistan. Bull Bot Soc Beng 9(2):107–108

    Google Scholar 

  • Smithson A (2006) Pollinator limitation and inbreeding depression in orchid species with and without nectar rewards. New Phytol 169:419–430

    Article  PubMed  Google Scholar 

  • Steiner KE (1991) Oil flowers and oil bees: further evidence of pollinator adaptation. Evolution 45:1493–1501

    Article  Google Scholar 

  • Stephenson AG (1981) Flower and fruit abortion: proximate causes and ultimate functions. Annu Rev Ecol Syst 12:253–279

    Article  Google Scholar 

  • Sun H, Luo Y, Alexandersson R, Ge S (2006) Pollination biology of the deceptive orchid Changnienia amoena. Biol J Linn Soc 150:165–175

    Article  Google Scholar 

  • Tamm CO (1991) Behaviour of some orchid populations in a changing environment. Observations on permanent plots, 1943–1990. In: Wells TCE, Willems JH (eds) Population ecology of terrestrial orchids. Academic Press, The Hague, pp 1–13

    Google Scholar 

  • Travis J (1984) Breeding system, pollination and pollinator limitation in a perennial herb Amiathium muscaetoxicum (Liliaceae). Am J Bot 71:941–947

    Article  Google Scholar 

  • Tremblay RL (1997) Distribution and dispersion patterns of individuals in nine species of Lepanthes (Orchidaceae). Biotropica 29:38–45

    Article  Google Scholar 

  • Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN (2005) Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol J Linn Soc 84:1–54

    Article  Google Scholar 

  • Udovic D (1981) Determinants of fruit set in Yucca whipplei: reproductive expenditure vs. pollinator availability. Oecologia 48:389–399

    Article  Google Scholar 

  • Waite S, Hopkins N, Hitchings S (1991) Levels of pollinia export, import and fruit set among plants of Anacamptis pyramidalis, Dactylorhiza fuchsia and Epipactis helleborine. In: Wells TCE, Willems JH (eds) Population ecology of terrestrial orchids. SPB, The Hague, pp 103–110

    Google Scholar 

  • Webb CO, Donoghue MJ (2007) Phylomatic. http://www.phylodiversity.net/phylomatic/

  • Webb CO, Ackerly DD, Kembel SW (2006) Software for the analysis of community phylogenetic structure and character evolution, version 3.32. http://www.phylodiversity.net/phylocom/

  • Wilcock CC, Neiland MRM (2002) Pollination failure in plants: why it happens and when it matters. Trends Plant Sci 7(6):270–277

    Article  PubMed  CAS  Google Scholar 

  • Willson MF, Price PW (1977) The evolution of inflorescence size in Asclepias (Asclepiadaceae). Evolution 31:495–511

    Article  Google Scholar 

  • Wilson PH, Thomson JD, Stanton ML, Rigney LP (1994) Beyond floral Batemania: gender biases in selection for pollination success. Am Nat 143:283–296

    Article  Google Scholar 

  • Wyatt R (1982) Inflorescence architecture: how flower number, arrangement, and phenology affect pollination and fruit-set. Am J Bot 69:585–594

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by a 3-year British Council research fellowship for M. K. H. as part of a DFID Aberdeen University–Chittagong University Biodiversity Project. The authors thank the Royal Society and the University of Aberdeen for additional financial support for this work. We gratefully acknowledge help from Professor M. Atiqur Rahman of Chittagong University, Dr Jeffrey Wood at RBG Kew for confirmation of identification of the orchid species, Dr Mike Swaine (University of Aberdeen) for statistical analyses and Dr Emily Swaine for help with the study on phylogenetic constraints. Dr Ruth Neiland (University of St Andrews), Emily Swaine and two anonymous referees kindly provided helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher C. Wilcock.

Additional information

Communicated by Florian Schiestl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huda, M.K., Wilcock, C.C. Impact of floral traits on the reproductive success of epiphytic and terrestrial tropical orchids. Oecologia 154, 731–741 (2008). https://doi.org/10.1007/s00442-007-0870-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-007-0870-4

Keywords

Navigation