Skip to main content
Log in

mTORC1/C2 regulate spermatogenesis in Eriocheir sinensis via alterations in the actin filament network and cell junctions

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Spermatogenesis is a finely regulated process of germ cell proliferation and differentiation that leads to the production of sperm in seminiferous tubules. Although the mammalian target of rapamycin (mTOR) signaling pathway is crucial for spermatogenesis in mammals, its functions and molecular mechanisms in spermatogenesis remain largely unknown in nonmammalian species, particularly in Crustacea. In this study, we first identified es-Raptor (the core component of mTOR complex 1) and es-Rictor (the core component of mTOR complex 2) from the testis of Eriocheir sinensis. Dynamic localization of es-Raptor and es-Rictor implied that these proteins were indispensable for the spermatogenesis of E. sinensis. Furthermore, es-Raptor and es-Rictor knockdown results showed that the mature sperm failed to be released, causing almost empty lumens in the testis. We investigated the reasons for these effects and found that the actin-based cytoskeleton was disrupted in the knockdown groups. In addition, the integrity of the testis barrier (similar to the blood-testis barrier in mammals) was impaired and affected the expression of cell junction proteins. Further study revealed that es-Raptor and es-Rictor may regulate spermatogenesis via both mTORC1- and mTORC2-dependent mechanisms that involve es-rpS6 and es-Akt/es-PKC, respectively. Moreover, to explore the testis barrier in E. sinensis, we established a cadmium chloride (CdCl2)–induced testis barrier damage model as a positive control. Morphological and immunofluorescence results were similar to those of the es-Raptor and es-Rictor knockdown groups. Altogether, es-Raptor and es-Rictor were important for spermatogenesis through maintenance of the actin filament network and cell junctions in E. sinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bai S, Cheng L, Zhang Y, Zhu CS, Zhu ZP, Zhu RP, Cheng CY, Ye L, Zheng K (2018) A germline-specific role for the mTORC2 component Rictor in maintaining spermatogonial differentiation and intercellular adhesion in mouse testis. Mol Hum Reprod 24:244–259

    Article  CAS  PubMed  Google Scholar 

  • Chandran U, Indu S, Kumar AT, Devi AN, Khan I, Srivastava D, Kumar PG (2016) Expression of Cnnm1 and its association with stemness, cell cycle, and differentiation in spermatogenic cells in mouse testis. Biol Reprod 95:1–12

    Article  CAS  Google Scholar 

  • Cheng CY, Mruk DD (2010) A local autocrine axis in the testes that regulates spermatogenesis. Nat Rev Endocrinol 6:380–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng CY, Mruk DD (2011) Regulation of spermiogenesis, spermiation and blood-testis barrier dynamics: novel insights from studies on Eps8 and Arp3. Biochem J 435:553–562

    Article  CAS  PubMed  Google Scholar 

  • Cheng CY, Mruk DD (2012) The blood-testis barrier and its implications for male contraception. Pharmacol Rev 64:16–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HQ, Mruk DD, Lee WM, Cheng CY (2017) Regulation of spermatogenesis by a local functional axis in the testis: role of the basement membrane–derived noncollagenous1 domain peptide. FASEB J 31:3587–3607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung NPY, Cheng CY (2001) Is cadmium chloride-induced inter-Sertoli tight junction permeability barrier disruption a suitable in vitro model to study the events of junction disassembly during spermatogenesis in the rat testis? Endocrinology 142:1878–1888

    Article  CAS  PubMed  Google Scholar 

  • Das G, Shiras A, Shanmuganandam K, Shastry P (2011) Rictor regulates MMP-9 activity and invasion through RAF-1-MEK-ERK signaling pathway in glioma cells. Mol Carcinog 50:412–423

    Article  CAS  PubMed  Google Scholar 

  • Dong HL, Chen ZJ, Wang CX, Xiong Z, Zhao WL, Jia CH, Lin J, Lin Y, Yuan WP, Zhao AZ, Bai XC (2015) Rictor regulates spermatogenesis by controlling Sertoli cell cytoskeletal organization and cell polarity in the mouse testis. Endocrinology 156:4244–4256

    Article  CAS  PubMed  Google Scholar 

  • Dougherty WJ, Sandifer PA (1984) Junctional relationships between germinal cells and sustentacular cells in the testes of a palaemonid shrimp. Tissue Cell 16:115–124

    Article  CAS  PubMed  Google Scholar 

  • Dunleavy JEM, O’Bryan MK, Stanton PG, O’Donnell L (2018) The cytoskeleton in spermatogenesis. Reproduction 157:R53–R72

    Article  Google Scholar 

  • Fan YS, Hu YJ, Yang WX (2012) TGF-beta superfamily: how does it regulate testis development. Mol Biol Rep 39:4727–4741

    Article  CAS  PubMed  Google Scholar 

  • Fayard E, Xue G, Parcellier A, Bozulic L, Hemmings BA (2010) Protein kinase B (PKB/Akt), a key mediator of the PI3K signaling pathway. Curr Top Microbiol Immunol 346:31–56

    CAS  PubMed  Google Scholar 

  • Ghafouri-Fard S, Shoorei H, Mohaqiq M, Raza S, Taheri M (2021) The role of different compounds on the integrity of blood-testis barrier: a concise review based on in vitro and in vivo studies. Gene 780:145531

    Article  CAS  PubMed  Google Scholar 

  • Griswold MD (1998) The central role of Sertoli cells in spermatogenesis. Semin Cell Dev Biol 9:411–416

    Article  CAS  PubMed  Google Scholar 

  • Guerra-Carvalho B, Carrageta DF, Crisóstomo L, Carvalho RA, Alves MG, Oliveira PF (2021) Molecular mechanisms regulating spermatogenesis in vertebrates: environmental, metabolic, and epigenetic factor effects. Anim Reprod Sci. https://doi.org/10.1016/j.anireprosci.2021.106896

    Article  PubMed  Google Scholar 

  • Gurel C, Kuscu GC, Buhur A, Dagdeviren M, Oltulu F, Yavasoglu NYK, Yavasoglu A (2019) Fluvastatin attenuates doxorubicin-induced testicular toxicity in rats by reducing oxidative stress and regulating the blood–testis barrier via mtor signaling pathway. Hum Exp Toxicol 38:1329–1343

    Article  CAS  PubMed  Google Scholar 

  • Hew KW, Heath GL, Jiwa AH, Welsh MJ (1993) Cadmium in vivo causes disruption of tight junction associated microfilaments in rat Sertoli cells. Biol Reprod 49:840–849

    Article  CAS  PubMed  Google Scholar 

  • Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122–1128

    Article  CAS  PubMed  Google Scholar 

  • Johnson KJ (2015) Testicular histopathology associated with disruption of the Sertoli cell cytoskeleton. Spermatogenesis 4:e979106

    Article  PubMed  PubMed Central  Google Scholar 

  • Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li LX, Tang EI, Chen HQ, Lian QQ, Ge RS, Silvestrini B, Cheng CY (2017) Sperm release at spermiation is regulated by changes in the organization of actin- and microtubule-based cytoskeletons at the apical ectoplasmic specialization-a study using the adjudin model. Endocrinology 158:4300–4316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Tang EI, Cheng CY (2016) Regulation of blood-testis barrier by actin binding proteins and protein kinases. Reproduction 151:R29–R41

    Article  CAS  PubMed  Google Scholar 

  • Liu ZQ, Jiang XH, Qi HY, Xiong LW, Qiu GF (2016) A novel SoxB2 gene is required for maturation of sperm nucleus during spermiogenesis in the Chinese mitten crab, Eriocheir sinensis. Sci Rep 6:32139

    Google Scholar 

  • Masri J, Bernath A, Martin J, Jo OD, Vartanian R, Funk A, Gera J (2007) mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res 67:11712–11720

    Article  CAS  PubMed  Google Scholar 

  • Mok KW, Chen H, Lee WM, Cheng CY (2015) rpS6 regulates blood-testis barrier dynamics through Arp3-mediated actin microfilament organization in rat Sertoli cells. An in vitro study. Endocrinology 156:1900–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mok KW, Mruk DD, Lee WM, Cheng CY (2012a) Spermatogonial stem cells alone are not sufficient to re-initiate spermatogenesis in the rat testis following adjudin-induced infertility. Int J Androl 35:86–101

  • Mok KW, Mruk DD, Silvestrini B, Cheng CY (2012b) rpS6 Regulates blood-testis barrier dynamics by affecting F-actin organization and protein recruitment. Endocrinology 153:5036–5048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mok KW, Lie PPY, Mruk DD, Mannu J, Silvestrini MPP, B, Cheng CY, (2012c) The apical ectoplasmic specialization-blood-testis barrier functional axis is a novel target for male contraception. Adv Exp Med Biol 763:334–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mok KW, Mruk DD, Cheng CY (2013a) Regulation of blood-testis barrier (BTB) dynamics during spermatogenesis via the “yin” and “yang” effects of mammalian target of rapamycin complex 1 (mTORC1) and mTORC2. Int Rev Cell Mol Biol 301:291–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mok KW, Mruk DD, Cheng CY (2014) rpS6 regulates blood-testis barrier dynamics through Akt-mediated effects on MMP-9. J Cell Sci 127:4870–4882

    PubMed  PubMed Central  Google Scholar 

  • Mok KW, Mruk DD, Lee WM, Cheng CY (2013b) Rictor/mTORC2 regulates blood-testis barrier dynamics via its effects on gap junction communications and actin filament network. FASEB J 27:1137–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira BP, Oliveira PF, Alves MG (2019) Molecular mechanisms controlled by mTOR in male reproductive system. Int J Mol Sci 20:1633

    Article  PubMed Central  Google Scholar 

  • Mruk DD, Silvestrini B, Cheng CY (2008) Anchoring junctions as drug targets: role in contraceptive development. Pharmacol Rev 60:146–180

    Article  CAS  PubMed  Google Scholar 

  • Mulholland DJ, Dedhar S, Vogl AW (2001) Rat seminiferous epithelium contains a unique junction (Ectoplasmic specialization) with signaling properties both of cell/cell and cell/matrix junctions. Biol Reprod 64:396–407

    Article  CAS  PubMed  Google Scholar 

  • Oh WJ, Jacinto E (2011) mTOR complex 2 signaling and functions. Cell Cycle 10:2305–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donnell L, Nicholls PK, O’Bryan MK, McLachlan RI, Stanton PG (2011) Spermiation: the process of sperm release. Spermatogenesis 1:14–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Palombi F, Salanova M, Tarone G, Farini D, Stefanini M (1992) Distribution of β1 integrin subunit in rat seminiferous epithelium. Biol Reprod 47:1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Sahin P, Gungor-Ordueri NE, Celik-Ozenci C (2018) Inhibition of mTOR pathway decreases the expression of pre-meiotic and meiotic markers throughout postnatal development and in adult testes in mice. Andrologia 50:e12811

    Article  Google Scholar 

  • Salanova M, Stefanini M, Curtis ID, Palombi F (1995) Integrin receptor α6β1 is localized at specific sites of cell-to-cell contact in rat seminiferous epithelium. Biol Reprod 52:79–87

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302

    Article  CAS  PubMed  Google Scholar 

  • Schell C, Kretz O, Liang W, Kiefer B, Schneider S, Sellung D, Bork T, Leiber C, Rüegg MA, Mallidis C, Schlatt S, Mayerhofer A, Huber TB, Grahammer F (2016) The rapamycin-sensitive complex of mammalian target of rapamycin is essential to maintain male fertility. Am J Pathol 186:324–336

    Article  CAS  PubMed  Google Scholar 

  • Schlatt S, Ehmcke J (2014) Regulation of spermatogenesis: an evolutionary biologist’s perspective. Semin Cell Dev Biol 29:2–16

    Article  CAS  PubMed  Google Scholar 

  • Serra N, Velte EK, Niedenberger BA, Kirsanov O, Geyer CB (2019) The mTORC1 component RPTOR is required for maintenance of the foundational spermatogonial stem cell pool in mice†. Biol Reprod 100:429–439

    Article  PubMed  Google Scholar 

  • Setchell BP, Waites GMH (1970) Changes in the permeability of the testicular capillaries and of the “blood-testis barrier” after injection of cadmium chloride in the rat. J Endocrinol 47:81–86

    Article  CAS  PubMed  Google Scholar 

  • Shisheva A (2013) PtdIns5P: news and views of its appearance, disappearance and deeds. Arch Biochem Biophys 538:171–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stambolic V, Woodgett JR (2006) Functional distinctions of protein kinase B/Akt isofroms defined by their influence on cell migration. Tends Cell Biol 16:461–466

    CAS  Google Scholar 

  • Staub C, Johnson L (2018) Review: spermatogenesis in the bull. Animal 12:s27–s35

    Article  CAS  PubMed  Google Scholar 

  • Tang EI, Lee WM, Cheng CY (2016) Coordination of actin- and microtubule-based cytoskeletons supports transport of spermatids and residual bodies/phagosomes during spermatogenesis in the rat testis. Endocrinology 157:1644–1659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang EI, Mok KW, Lee WM, Cheng CY (2015) EB1 regulates tubulin and actin cytoskeletal networks at the Sertoli cell blood-testis barrier in male rats: an in vitro study. Endocrinology 156:680–693

    Article  PubMed  Google Scholar 

  • Upadhyay RD, Kumar AV, Ganeshan M, Balasinor NH (2012) Tubulobulbar complex: cytoskeletal remodeling to release spermatozoa. Reprod Biol Endocrinol 10:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen Q, Tang EI, Gao Y, Jesus TT, Chu DS, Lee WM, Wong CK, Liu YX, Xiao X, Silvestrini B, Cheng CY (2018) Signaling pathways regulating blood-tissue barriers—lesson from the testis. Biochim Biophys Acta Biomembr 1860:141–153

    Article  CAS  PubMed  Google Scholar 

  • Wong CH, Mruk DD, Lui WY, Cheng CY (2004) Regulation of blood-testis barrier dynamics: anin vivo study. J Cell Sci 117:783–798

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Wei YX, Zhou Y, Long CL, Hong YF, Fu Y, Zhao TX, Wang JK, Wu YH, Wu SD, Shen LJ, Wei GH (2020) Bisphenol s perturbs sertoli cell junctions in male rats via alterations in cytoskeletal organization mediated by an imbalance between mTORC1 and mTORC2. Sci Total Environ 762:144059

    Article  PubMed  Google Scholar 

  • Xia W, Wong EWP, Mruk DD, Cheng CY (2009) TGF-β3 and TNF-α perturb blood-testis barrier (BTB) dynamics by accelerating the clathrin-mediated endocytosis of integral membrane proteins: a new concept of BTB regulation during spermatogenesis. Dev Biol 327:48–61

    Article  CAS  PubMed  Google Scholar 

  • Xiong MN, Zhu ZP, Tian SW, Zhu RP, Bai S, Fu KQ, Davis JG, Sun Z, Baur JA, Zheng K, Ye L (2017) Conditional ablation of Raptor in the male germline causes infertility due to meiotic arrest and impaired inactivation of sex chromosomes. FASEB J 31:3934–3949

    Article  CAS  PubMed  Google Scholar 

  • Xiong Z, Wang CX, Wang ZL, Dai HQ, Song QC, Zou ZP, Xiao B, Zhao AZ, Bai XC, Chen ZJ (2018) Raptor directs Sertoli cell cytoskeletal organization and polarity in the mouse testis. Biol Reprod 99:1289–1302

    Article  PubMed  Google Scholar 

  • Yang WX, Du NS, Lai W (1999) Junctions between spermatogenic cells and Sertoli cells of Macrobrachium nipponense. Acta Zoologica Sinica 45:178–186

    Google Scholar 

Download references

Acknowledgements

The authors want to show their appreciation to all members of the Sperm Laboratory in Zhejiang University for their support, encouragement, and assistance.

Funding

This project was supported by the National Natural Science Foundation of China (no. 32072954 and no. 32102786).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuang-Li Hao or Wan-Xi Yang.

Ethics declarations

Ethics approval

The animal use in this study was approved by the Animal Experimental Ethical Inspection of the First Affiliated Hospital, College of Medicine, Zhejiang University (Reference Number: 2019–1061).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

441_2022_3680_MOESM1_ESM.tif

Supplementary file1 Fig. S1 Multiple sequence alignment of es-Raptor and other species of Raptor GenBank accession numbers for the analyzed sequences were as follows: HsRaptor, Homo sapiens (AAI36653.1), MmRaptor, Mus musculus (NP_083174.2), XtRaptor, Xenopus tropicalis (NP_001123843.1), DrRaptor, Danio rerio (XP_021327418.1), DmRaptor, Drosophila melanogaster (NP_001284924.1) (TIF 7003 KB)

441_2022_3680_MOESM2_ESM.tif

Supplementary file2 Fig. S2 Multiple sequence alignment of es-Rictor and other species of Rictor GenBank accession numbers for the analyzed sequences were as follows: HsRictor, Homo sapiens (AAI44510.1), MmRictor, Mus musculus (NP_084444.3), DrRictor, Danio rerio (XP_009293661.1), DmRictor, Drosophila melanogaster (NP_001285433.1) (TIF 7610 KB)

441_2022_3680_MOESM3_ESM.tif

Supplementary file3 Fig. S3 Structural domains and phylogenetic trees (a) The es-Raptor protein had the Raptor_N domain (46-199 aa) and seven WD domains (931-1263 aa). The sequence numbers of the selected species were as follows: Drosophila melanogaster (NP_001284924.1), Homo sapiens (AAI36653.1), Mus musculus (NP_083174.2), Xenopus tropicalis (NP_001123843.1), Danio rerio (XP_021327418.1), Sus scrofa (JAA53799.1), Penaeus monodon (XP_037776024.1), Lepeophtheirus salmonis (CAF2941010.1), Manduca sexta (XP_037293727.1), Parasteatoda tepidariorum (XP_042895958.1), Belonocnema treatae (XP_033214113.1), Solenopsis invicta (XP_025995586.1), Culex quinquefasciatus (XP_038108826.1), Bombyx mori (NP_001177772.1). (b) The es-Rictor protein domains contained RICTOR_N domain (108-474 aa)、RICTOR_M domain (562-785 aa)、Ras GEF N_2 domain (786-900 aa)、RICTOR V domain (962-1034 aa). The sequence numbers of the selected species were as follows: Drosophila melanogaster (NP_001285433.1), Homo sapiens (AAI44510.1), Mus musculus (NP_084444.3), Danio rerio (XP_009293661.1), Bos taurus (NP_001137568.1), Sus scrofa (XP_005672486.2), Penaeus monodon (XP_037803156.1), Lepeophtheirus salmonis (CAF2942537.1), Monomorium pharaonis (XP_012523043.2), Chelonus insularis (XP_034935765.1), Araneus ventricosus (GBM31652.1), Apis florea (XP_012347111.1) (TIF 8155 KB)

441_2022_3680_MOESM4_ESM.tif

Supplementary file4 Fig. S4 Specificity of the es-Raptor and es-Rictor antibodies (a) Western blot results of the total protein of E. sinensis testis using the es-Raptor antibody. (b) Western blot results of the total protein of E. sinensis testis using the es-Rictor antibody (TIF 3552 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZF., Hao, SL., Wang, LM. et al. mTORC1/C2 regulate spermatogenesis in Eriocheir sinensis via alterations in the actin filament network and cell junctions. Cell Tissue Res 390, 293–313 (2022). https://doi.org/10.1007/s00441-022-03680-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03680-3

Keywords

Navigation