Skip to main content
Log in

Identification of cholinergic cells with chemosensory traits in the porcine uterus

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Chemosensory cells are specialized epithelial cells that act as sentinels near body entry sites. The majority of these cells express a cholinergic phenotype and utilize the taste signaling system to monitor the mucosal environment for potentially harmful substances, triggering protective reflexes. We report the identification of cells with a putative chemosensory role in the uterus. Presumptive chemosensory cells were immunoreactive to key components of the taste transduction, including the transient receptor potential channel M5 (TRPM5) and the phospholipase Cβ2 (PLCB2). These cells localized to endometrial glandular and luminal epithelia, while absent from myometrium and perimetrium. Double immunofluorescence revealed co-expression of chemosensory cell markers with the acetylcholine (ACh) synthesizing enzyme, choline acetyltransferase (ChAT). Further, we investigated the regional distribution and expression of chemosensory cells at different stages of the estrous cycle. Uteri were collected postmortem from gilts and stages of the ovarian cycle were determined macroscopically. The uteri were classified into three groups: prepubertal (PB), follicular (FOL), or luteal (LUT). The number of ChAT-immunoreactive cells was increased in the luminal epithelium in the caudal compartment compared to the cranial region of the uterine horn, and at the LUT compared to PB and FOL stages. An increase in ChAT protein abundance in LUT uterine homogenates was noted, although not followed by an increase in ACh content. In summary, our study has identified a hitherto unrecognized cholinergic cell in the uterus that has chemosensory traits and may be involved in a multitude of biological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its supplementary material.

References

  • Akimori T, Hanazaki K, Okabayashi T, Okamoto K, Kobayashi M, Ogata T (2011) Quantitative distribution of brush cells in the rat gastrointestinal tract: brush cell population coincides with NaHCO3 secretion. Med Mol Morphol 44:7–14

    Article  CAS  PubMed  Google Scholar 

  • Ashworth MD, Ross JW, Hu J, White FJ, Stein DR, DeSilva U, Johnson GA, Spencer TE, Geisert RD (2006) Expression of porcine endometrial prostaglandin synthase during the estrous cycle and early pregnancy and following endocrine disruption of pregnancy. Biol Reprod 74:1007–1015

    Article  CAS  PubMed  Google Scholar 

  • Bankova LG, Dwyer DF, Yoshimoto E, Ualiyeva S, McGinty JW, Raff H, von Moltke J, Kanaoka Y, Austen F, Barrett NA (2018) The cysteinyl leukotriene 3 receptor regulates expansion of IL-25-producing airway brush cells leading to type 2 inflammation. Sci Immunol 3(28):eaat9453

  • Banerjee A, McKinley ET, von Moltke J, Coffey RJ, Lau KS (2018) Interpreting heterogeneity in intestinal tuft cell structure and function. J Clin Invest 128:1711–1719

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellier JP, Kimura H (2011) Peripheral type of choline acetyltransferase: biological and evolutionary implications for novel mechanisms in cholinergic system. J Chem Neuronat 42:225–235

    Article  CAS  Google Scholar 

  • Bezençon C, Fürholz A, Raymond F, Mansourian R, Metairon S, Le Coutre J, Damak S (2008) Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells. J Comp Neurol 509:514–525

    Article  PubMed  Google Scholar 

  • Bonnefont AB, Muñoz FJ, Inestrosa NC (1998) Estrogen protects neuronal cells from the cytotoxicity induced by acetylcholinesterase-amyloid complexes. FEBS Lett 441:220–224

    Article  CAS  PubMed  Google Scholar 

  • Braun T, Mack B, Kramer MF (2011) Solitary chemosensory cells in the respiratory and vomeronasal epithelium of the human nose: a pilot study. Rhinology 49:507–512

    Article  PubMed  Google Scholar 

  • Chang LY, Mercer RR, Crapo JD (1986) Differential distribution of brush cells in the rat lung. Anat Record 216:49–54

    Article  CAS  Google Scholar 

  • Cheng X, Voss U, Ekblad E (2018) Tuft cells: distribution and connections with nerves and endocrine cells in mouse intestine. Exp Cell Res 369:105–111

    Article  CAS  PubMed  Google Scholar 

  • Christenson LK, Anderson LH, Ford SP, Farley DB (1994) Luteal maintenance during early pregnancy in the pig: role for prostaglandin E2. Prostaglandins 47:61–75

    Article  CAS  PubMed  Google Scholar 

  • Deckmann K, Filipski K, Krasteva-Christ G, Fronius M, Althaus M, Rafiq A, Papadakis T, Renno L, Jurastow I, Wessels L (2014) Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes. Proc Natl Acad Sci U S A 111:8287–8292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deckmann K, Krasteva-Christ G, Rafiq A, Herden C, Wichmann J, Knauf S, Nassenstein C, Grevelding CG, Dorresteijn A, Chubanov V (2015) Cholinergic urethral brush cells are widespread throughout placental mammals. Int Immunopharmacol 29:51–56

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi C, Long NJ (1989) Effect of cholinergic agents on human spermatozoa motility. Biochem Med Metab B 42:66–70

    Article  CAS  Google Scholar 

  • Dyer J, Daly K, Salmon KSH, Arora DK, Kokrashvili Z, Margolskee RF, Shirazi-Beechey SP (2007) Intestinal glucose sensing and regulation of intestinal glucose absorption. Biochem Soc T 35:1191–1194

    Article  CAS  Google Scholar 

  • Félix B, Léger ME, Albe-Fessard D, Marcilloux JC, Rampin O, Laplace JP, Duclos A, Fort F, Gougis S, Costa M, Duclos N (1999) Stereotaxic atlas of the pig brain. Brain Res Bull 49(1–2):1–137

    Article  PubMed  Google Scholar 

  • Fisher MC, Zeisel SH, Mar M-H, Sadler TW (2002) Perturbations in choline metabolism cause neural tube defects in mouse embryos in vitro. FASEB J 16:619–621

    Article  CAS  PubMed  Google Scholar 

  • Fujii T, Yamada S, Watanabe Y, Misawa H, Tajima S, Fujimoto K, Kasahara T, Kawashima K (1998) Induction of choline acetyltransferase mRNA in human mononuclear leukocytes stimulated by phytohemagglutinin a T-cell activator. J Neuroimmunol 82:101–107

    Article  CAS  PubMed  Google Scholar 

  • Gerbe F, Van Es JH, Makrini L, Brulin B, Mellitzer G, Robine S, Romagnolo B, Shroyer NF, Bourgaux J-F, Pignodel C (2011) Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J Cell Bio 192:767–780

    Article  CAS  Google Scholar 

  • Gerbe F, Legraverend C, Jay P (2012) The intestinal epithelium tuft cells: specification and function. Cell Mol Life Sci 69:2907–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafez ESE (2004) Anatomia da reprodução feminina. In: Reprodução animal, vol 6. Manole, Sao Paulo, Brazil

  • Höflmayer D, Öztürk E, Schroeder C, Hube-Magg C, Blessin NC, Simon R, Lang DS, Neubauer E, Göbel C, Heinrich M-C, Fraune C, Möller K, Armbrust M, Freytag M, Hinsch A, Lühr C, Noack M, Reiswich V, Weidemann S, Bockhorn M, Perez D, Izbicki JR, Sauter G, Jacobsen F (2018) High expression of class III β-tubulin in upper gastrointestinal cancer types. Oncol Lett 16:7139–7145

    PubMed  PubMed Central  Google Scholar 

  • Hollenhorst MI, Jurastow I, Nandigama R, Appenzeller S, Li L, Vogel J, Wiederhold S, Althaus M, Empting M, Altmüller J, Hirsch AKH, Flockerzi V, Canning BJ, Saliba A-E, Krasteva-Christ G (2020) Tracheal brush cells release acetylcholine in response to bitter tastants for paracrine and autocrine signaling. The FASEB J 34:316–332

    Article  CAS  PubMed  Google Scholar 

  • Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV, Weinstock JV, Gallini CA, Redding K, Margolskee RF, Osborne LC (2016) Tuft cells taste-chemosensory cells orchestrate parasite type 2 immunity in the gut. Sci 351:1329–1333

    Article  CAS  Google Scholar 

  • Illsley NP, Lamartiniere CA (1981) Endocrine regulation of rat serum cholinesterase activity. Endocrinology 108:1737–1743

    Article  CAS  PubMed  Google Scholar 

  • Jana B, Całka J, Bulc M, Piotrowska-Tomala KK (2020) Participation of acetylcholine and its receptors in the contractility of inflamed porcine uterus. Theriogenology 143:123–132

    Article  CAS  PubMed  Google Scholar 

  • Klapproth H, Reinheimer T, Metzen J, Münch M, Bittinger F, Kirkpatrick CJ, Höhle K-D, Schemann M, Racké K, Wessler I (1997) Non-neuronal acetylcholine a signalling molecule synthezised by surface cells of rat and man. Naunyn-Schmiedeberg’s Arch Pharmacol 355:515–523

    Article  CAS  Google Scholar 

  • Kraeling RR, Rampacek GB, Fiorello NA (1985) Inhibition of pregnancy with indomethacin in mature guts and prepuberal guts induced to ovulate. Biol Reprod 32:105–110

    Article  CAS  PubMed  Google Scholar 

  • Krasteva G, Canning BJ, Hartmann P, Veres TZ, Papadakis T, Mühlfeld C, Schliecker K, Tallini YN, Braun A, Hackstein H (2011) Cholinergic chemosensory cells in the trachea regulate breathing. Proc Natl Acad Sci USA 108:9478–9483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasteva G, Hartmann P, Papadakis T, Bodenbenner M, Wessels L, Weihe E, Schütz B, Langheinrich AC, Chubanov V, Gudermann T (2012) Cholinergic chemosensory cells in the auditory tube. Histochem Cell Biol 137:483–497

    Article  CAS  PubMed  Google Scholar 

  • Kugler P, Höfer D, Mayer B, Drenckhahn D (1994) Nitric oxide synthase and NADP-linked glucose-6-phosphate dehydrogenase are co-localized in brush cells of rat stomach and pancreas. J Histochem Cytochem 42:1317–1321

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Lu S, Xu R, Atzberger A, Günther S, Wettschureck N, Offermanns S (2017) Members of bitter taste receptor cluster Tas2r143/Tas2r135/Tas2r126 are expressed in the epithelium of murine airways and other non-gustatory tissues. Front Physiol 8:849

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mace OJ, Affleck J, Patel N, Kellett GL (2007) Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J Physiol 582:379–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins DB, Mazzanti CM, França RT, Pagnoncelli M, Costa MM, de Souza EM, Gonçalves J, Spanevello R, Schmatz R, da Costa P, Mazzanti A, Beckmann DV, da Cecim MS, Schetinger MR, dos dos Anjos Lopes ST (2012) 17-β estradiol in the acetylcholinesterase activity and lipid peroxidation in the brain and blood of ovariectomized adult and middle-aged rats. Life Sci 90:351–359

    Article  CAS  PubMed  Google Scholar 

  • Massoulié J, Pezzementi L, Bon S, Krejci E, Vallette F-M (1993) Molecular and cellular biology of cholinesterases. Prog Neurobiol 41:31–91

    Article  PubMed  Google Scholar 

  • Matsumoto I, Ohmoto M, Narukawa M, Yoshihara Y, Abe K (2011) Skn-1a (Pou2f3) specifies taste receptor cell lineage. Nat Neurosci 14:685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayerhofer A, Dimitrijevic N, Kunz L (2003) The expression and biological role of the non-neuronal cholinergic system in the ovary. Life Sci 72:2039–2045

    Article  CAS  PubMed  Google Scholar 

  • McGinty JW, Ting H-A, Billipp TE, Nadjsombati MS, Khan DM, Barrett NA, Liang H-E, Matsumoto I, von Moltke J (2020) Tuft cell-derived leukotrienes drive rapid anti-helminth immunity in the small intestine but are dispensable for anti-protist immunity. Immunity 52:528–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina JL, Reinicke K, Simpfendörfer R, Roa A, Oliveros H, Bardisa L, Rudolph MI (1993) Characterization and distribution of cholinesterase activity in mouse uterine horns: changes in estrous cycle. Comp Biochem Physiol Part c: Pharmacol, Toxicol and Endocrinol 106(2):473–478

    CAS  Google Scholar 

  • Merigo F, Benati D, Di Chio M, Osculati F, Sbarbati A (2007) Secretory cells of the airway express molecules of the chemoreceptive cascade. Cell Tissue Res 327:231–247

    Article  CAS  PubMed  Google Scholar 

  • Meyerholz DK, Reznikov LR (2017) Simple and reproducible approaches for the collection of select porcine ganglia. J Neurosci Methods 289:93–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadjsombati MS, McGinty JW, Lyons-Cohen MR, Jaffe JB, DiPeso L, Schneider C, Miller CN, Pollack JL, Gowda GAN, Fontana MF (2018) Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity 49:33–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Leary CE, Schneider C, Locksley RM (2019) Tuft cells-systemically dispersed sensory epithelia integrating immune and neural circuitry. Annu Rev Immunol 37:47–72

    Article  CAS  PubMed  Google Scholar 

  • O’Malley CA, Hautamaki RD, Kelley M, Meyer EM (1987) Effects of ovariectomy and estradiol benzoate on high affinity choline uptake, ACh synthesis, and release from rat cerebral cortical synaptosomes. Brain Res 403:389–392

    Article  CAS  PubMed  Google Scholar 

  • Oberlender G, Pontelo TP, Miranda JR, Miranda DR, Zangeronimo MG, Silva AC, Menezes TA, Rocha LGP (2014) Morphological and morphometric evaluation of prepubertal gilt ovaries, uterine tubes and uterus at different oestrus cycle stages. Pesqui Vet Brasil 34:83–90

    Article  Google Scholar 

  • Ogawa H, Fujii T, Watanabe Y, Kawashima K (2003) Expression of multiple mRNA species for choline acetyltransferase in human T-lymphocytes. Life Sci 72:2127–2130

    Article  CAS  PubMed  Google Scholar 

  • Ogura T, Szebenyi SA, Krosnowski K, Sathyanesan A, Jackson J, Lin W (2011) Cholinergic microvillous cells in the mouse main olfactory epithelium and effect of acetylcholine on olfactory sensory neurons and supporting cells. J Neurophysiol 106:1274–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan J, Zhang L, Shao X, Huang J (2020) Acetylcholine from tuft cells: the updated insights beyond its immune and chemosensory functions. Frontiers in Cell Dev Biol 8:606

    Article  Google Scholar 

  • Paria BC, Reese J, Das SK, Dey SK (2002) Deciphering the cross-talk of implantation: advances and challenges. Sci 296:2185–2188

    Article  CAS  Google Scholar 

  • Perniss A, Liu S, Boonen B, Keshavarz M, Ruppert A-L, Timm T, Pfeil U, Soultanova A, Kusumakshi S, Delventhal L (2020) Chemosensory cell-derived acetylcholine drives tracheal mucociliary clearance in response to virulence-associated formyl peptides. Immunity 52:683–699

    Article  CAS  PubMed  Google Scholar 

  • Reznikov LR, Pasumarthi RK, Fadel JR (2009) Caffeine elicits c-Fos expression in horizontal diagonal band cholinergic neurons. NeuroReport 20:1609–1612

    Article  CAS  PubMed  Google Scholar 

  • Reznikov LR, Dong Q, Chen JH, Moninger TO, Park JM, Zhang Y, Du J, Hildebrand MS, Smith RJH, Randak CO, Stoltz DA, Welsh MJ (2013) CFTR-deficient pigs display peripheral nervous system defects at birth. Proc Natl Acad Sci U S A 110:3083–3088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogan MP, Reznikov LR, Pezzulo AA, Gansemer ND, Samuel M, Prather RS, Zabner J, Fredericks DC, McCray Jr PM, Welsh MJ, Stoltz DA (2010) Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth. Proc Natl Acad Sci U S A 107:20,571–20,575

  • Sanglard LP, Schmitz-Esser S, Gray KA, Linhares DCL, Yeoman CJ, Dekkers JCM, Niederwerder MC, Serão NVL (2020) Vaginal microbiota diverges in sows with low and high reproductive performance after porcine reproductive and respiratory syndrome vaccination. Sci Rep 10:1–11

    Article  Google Scholar 

  • Saqui-Salces M, Keeley TM, Grosse AS, Qiao XT, El-Zaatari M, Gumucio DL, Samuelson LC, Merchant JL (2011) Gastric tuft cells express DCLK1 and are expanded in hyperplasia. Histochem Cell Biol 136:191–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders CJ, Christensen M, Finger TE, Tizzano M (2014) Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. Proc Natl Acad Sci U S A 111:6075–6080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders CJ, Reynolds SD, Finger TE (2013) Chemosensory brush cells of the trachea. A stable population in a dynamic epithelium. Am J Resp Cell Mol 49:190–196

    Article  CAS  Google Scholar 

  • Schütz B, Bader JI, Ringer S, von Engelhardt C, Chubanov J, Gudermann V, Diener T, Kummer M, W, Krasteva-Christ G, (2015) Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract. Front Physiol 6:1–14

    Google Scholar 

  • Schütz B, Ruppert A-L, Strobel O, Lazarus M, Urade Y, Büchler MW, Weihe E (2019) Distribution pattern and molecular signature of cholinergic tuft cells in human gastro-intestinal and pancreatic-biliary tract. Sci Rep 9:1–13

    Article  Google Scholar 

  • Sponchiado M, Liao YS, Atanasova KR, Collins EN, Schurmann V, Bravo L, Reznikov LR (2021) Overexpression of substance P in pig airways increases MUC5AC through an NF‐kβ pathway. Physiol Rep 9:e14749

  • Steffl M, Schweiger M, Wessler I, Kunz L, Mayerhofer A, Amselgruber WM (2006) Non-neuronal acetylcholine and choline acetyltransferase in oviductal epithelial cells of cyclic and pregnant pigs. Anat Embryol 211:685–690

    Article  CAS  Google Scholar 

  • Tizzano M, Cristofoletti M, Sbarbati A, Finger TE (2011) Expression of taste receptors in solitary chemosensory cells of rodent airways. BMC Pulm Med 11:1–12

    Article  Google Scholar 

  • Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP, Sibhatu HM, Churchill MEA, Silver WL, Kinnamon SC, Finger TE (2010) Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci U S A 107:3210–3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Moltke J, Ji M, Liang H-E, Locksley RM (2016) Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529:221–225

    Article  Google Scholar 

  • Waclawik A, Rivero-Muller A, Blitek A, Kaczmarek MM, Brokken LJS, Watanabe K, Rahman NA, Ziecik AJ (2006) Molecular cloning and spatiotemporal expression of prostaglandin F synthase and microsomal prostaglandin E synthase-1 in porcine endometrium. Endocrinology 147:210–221

    Article  CAS  PubMed  Google Scholar 

  • Wessler I, Kirkpatrick CJ (2008) Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Brit J Pharmacol 154:1558–1571

    Article  CAS  Google Scholar 

  • Wiederhold S, Papadakis T, Chubanov V, Gudermann T, Krasteva-Christ G, Kummer W (2015) A novel cholinergic epithelial cell with chemosensory traits in the murine conjunctiva. Int Immunopharmacol 29:45–50

    Article  CAS  PubMed  Google Scholar 

  • Yamashita J, Ohmoto M, Yamaguchi T, Matsumoto I, Hirota J (2017) Skn-1a/Pou2f3 functions as a master regulator to generate Trpm5-expressing chemosensory cells in mice. PloS one 12:e0189340

  • Yasuhara O, Aimi Y, Shibano A, Matsuo A, Bellier JP, Park M, Tooyama I, Kimura H (2004) Innervation of rat iris by trigeminal and ciliary neurons expressing pChAT a novel splice variant of choline acetyltransferase. J Comp Neurol 472:232–245

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Paul Cooke (University of Florida) for providing the chemiluminescent western blot scanner.

Funding

This work was partially supported by 1OT2OD026582 (PI, LRR).

Author information

Authors and Affiliations

Authors

Contributions

M.S. and L.R.R. designed the study. M.S. and Y-S.L. performed the experiments. M.S. analyzed the data, prepared the figures, and drafted the manuscript. L.R.R. supervised the study and corrected the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Leah R. Reznikov.

Ethics declarations

Ethics approval

Procedures involving animals were conducted in accordance with Institutional guidelines and approved by the Animal Care and Use Committee at the University of Florida (Studies # 202111437 and 201910604).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sponchiado, M., Liao, YS. & Reznikov, L.R. Identification of cholinergic cells with chemosensory traits in the porcine uterus. Cell Tissue Res 388, 33–47 (2022). https://doi.org/10.1007/s00441-022-03585-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-022-03585-1

Keywords

Navigation