Skip to main content

Advertisement

Log in

Identification and characterisation of maternal perivascular SUSD2+ placental mesenchymal stem/stromal cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) that meet the International Society for Cellular Therapy (ISCT) criteria are obtained from placental tissue by plastic adherence. Historically, no known single marker was available for isolating placental MSCs (pMSCs) from the decidua basalis. As the decidua basalis is derived from the regenerative endometrium, we hypothesised that SUSD2, an endometrial perivascular MSC marker, would purify maternal perivascular pMSC. Perivascular pMSCs were isolated from the maternal placenta using SUSD2 magnetic bead sorting and assessed for the colony-forming unit-fibroblasts (CFU-F), surface markers, and in vitro differentiation into mesodermal lineages. Multi-colour immunofluorescence was used to colocalise SUSD2 and α-SMA, a perivascular marker in the decidua basalis. Placental stromal cell suspensions comprised 5.1%SUSD2+ cells. SUSD2 magnetic bead sorting of the placental stromal cells increased their purity approximately two-fold. SUSD2+ pMSCs displayed greater CFU-F activity than SUSD2 stromal fibroblasts (pSFs). However, both SUSD2+ pMSC and SUSD2 pSF underwent mesodermal differentiation in vitro, and both expressed the ISCT surface markers. Higher percentages of cultured SUSD2+ pMSCs expressed the perivascular markers CD146, CD140b, and SUSD2 than SUSD2 pSFs. These findings suggest that SUSD2 is a single marker that enriches maternal pMSCs, suggesting they may originate from eMSC. Placental decidua basalis can be used as an alternative source of MSC for clinical translation in situations where there is no access to endometrial tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ai J, Shahverdi AR, Barough SE, Kouchesfehani HM, Heidari S, Roozafzoon R, Verdi J, Khoshzaban A (2012) Derivation of adipocytes from human endometrial stem cells (EnSCs). J Reprod Infertil 13:151–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bačenková D, Rosocha J, Tóthová T, Rosocha L, Šarisský M (2011) Isolation and basic characterization of human term amnion and chorion mesenchymal stromal cells. Cytotherapy 13:1047–1056

    Article  PubMed  CAS  Google Scholar 

  • Battula VL, Treml S, Abele H, Bühring HJ (2008) Prospective isolation and characterization of mesenchymal stem cells from human placenta using a frizzled-9-specific monoclonal antibody. Differentiation 76:326–336

    Article  CAS  PubMed  Google Scholar 

  • Bianco P, Cao X, Frenette PS, Mao JJ, Robey PG, Simmons PJ, Wang CY (2013) The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 19:35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozorgmehr M, Gurung S, Darzi S, Nikoo S, Kazemnejad S, Zarnani AH, Gargett CE (2020) Endometrial and menstrual blood mesenchymal stem/stromal cells: biological properties and clinical application. Front Cell Dev Biol 8:497

    Article  PubMed  PubMed Central  Google Scholar 

  • Busser H, Najar M, Raicevic G, Pieters K, Velez Pombo R, Philippart P, Meuleman N, Bron D, Lagneaux L (2015) Isolation and characterization of human mesenchymal stromal cell subpopulations: comparison of bone marrow and adipose tissue. Stem Cells Dev 24:2142–2157

    Article  CAS  PubMed  Google Scholar 

  • Campioni D, Lanza F, Moretti S, Dominici M, Punturieri M, Pauli S, Hofinann T, Horwitz E, Castoldi G (2003) Functional and immunophenotypic characteristics of isolated CD105+ and fibroblast+ stromal cells from AML: implications for their plasticity along endothelial lineage. Cytotherapy 5:66–79

    Article  CAS  PubMed  Google Scholar 

  • Castrechini NM, Murthi P, Gude NM, Erwich JJ, Gronthos S, Zannettino A, Brennecke SP, Kalionis B (2010) Mesenchymal stem cells in human placental chorionic villi reside in a vascular Niche. Placenta 31:203–212

    Article  CAS  PubMed  Google Scholar 

  • Chan RW, Schwab KE, Gargett CE (2004) Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod 70:1738–1750

    Article  CAS  PubMed  Google Scholar 

  • Chien CC, Yen BL, Lee FK, Lai TH, Chen YC, Chan SH, Huang HI (2006) In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem Cells 24:1759–1768

    Article  PubMed  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  • Darzi S, Deane JA, Nold CA, Edwards SE, Gough DJ, Mukherjee S, Gurung S, Tan KS, Vashi AV, Werkmeister JA, Gargett CE (2018) Endometrial mesenchymal stem/stromal cells modulate the macrophage response to implanted polyamide/gelatin composite mesh in immunocompromised and immunocompetent mice. Sci Rep 8:6554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darzi S, Urbankova I, Su K, White J, Lo C, Alexander D, Werkmeister JA, Gargett CE, Deprest J (2016a) Tissue response to collagen containing polypropylene meshes in an ovine vaginal repair model. Acta Biomater 39:114–123

    Article  CAS  PubMed  Google Scholar 

  • Darzi S, Werkmeister JA, Deane JA, Gargett CE (2016b) Identification and characterization of human endometrial mesenchymal stem/stromal cells and their potential for cellular therapy. Stem Cells Transl Med 5:1127–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Donofrio G, Franceschi V, Capocefalo A, Cavirani S, Sheldon IM (2008) Bovine endometrial stromal cells display osteogenic properties. Reprod Biol Endocrinol 6:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eirin A, Zhu XY, Krier JD, Tang H, Jordan KL, Grande JP, Lerman A, Textor SC, Lerman LO (2012) Adipose tissue-derived mesenchymal stem cells improve revascularization outcomes to restore renal function in swine atherosclerotic renal artery stenosis. Stem Cells 30:1030–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emmerson S, Mukherjee S, Melendez-Munoz J, Cousins F, Edwards SL, Karjalainen P, Ng M, Tan KS, Darzi S, Bhakoo K, Rosamilia A, Werkmeister JA, Gargett CE (2019) Composite mesh design for delivery of autologous mesenchymal stem cells influences mesh integration, exposure and biocompatibility in an ovine model of pelvic organ prolapse. Biomaterials 225:119495

    Article  CAS  PubMed  Google Scholar 

  • Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K (2004) Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 22:649–658

    Article  CAS  PubMed  Google Scholar 

  • Gargett CE, Gurung S, Darzi S, Werkmeister JA, Mukherjee S (2019) Tissue engineering approaches for treating pelvic organ prolapse using a novel source of stem/stromal cells and new materials. Curr Opin Urol 29:450–457

    Article  PubMed  Google Scholar 

  • Gargett CE, Schwab KE, Deane JA (2016) Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update 22:137–163

    Article  CAS  PubMed  Google Scholar 

  • Gargett CE, Schwab KE, Zillwood RM, Nguyen HP, Wu D (2009) Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod 80:1136–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gronthos S, Simmons PJ (1995) The growth factor requirements of STRO-1-positive human bone marrow stromal precursors under serum-deprived conditions in vitro

  • Gurung S, Ulrich D, Sturm M, Rosamilia A, Werkmeister JA, Gargett CE (2020) Comparing the effect of tgf-β receptor inhibition on human perivascular mesenchymal stromal cells derived from endometrium, bone marrow and adipose tissues. J Pers Med 10:261

    Article  PubMed Central  Google Scholar 

  • Gurung S, Werkmeister JA, Gargett CE (2015) Inhibition of transforming growth factor-beta receptor signaling promotes culture expansion of undifferentiated human endometrial mesenchymal stem/stromal cells. Sci Rep 5:15042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurung S, Williams S, Deane JA, Werkmeister JA, Gargett CE (2018) The transcriptome of human endometrial mesenchymal stem cells under TGFβR inhibition reveals improved potential for cell-based therapies. Front Cell Dev Biol 6:164

    Article  PubMed  PubMed Central  Google Scholar 

  • Haniffa MA, Collin MP, Buckley CD, Dazzi F (2009) Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica 94:258–263

    Article  CAS  PubMed  Google Scholar 

  • Heazlewood CF, Sherrell H, Ryan J, Atkinson K, Wells CA, Fisk NM (2014) High incidence of contaminating maternal cell overgrowth in human placental mesenchymal stem/stromal cell cultures: a systematic review. Stem Cells Transl Med 3:1305–1311

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho AD, Wagner W, Franke W (2008) Heterogeneity of mesenchymal stromal cell preparations. Cytotherapy 10:320–330

    Article  CAS  PubMed  Google Scholar 

  • Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88:792–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konstantinovic ML, Pille E, Malinowska M, Verbeken E, De Ridder D, Deprest J (2007) Tensile strength and host response towards different polypropylene implant materials used for augmentation of fascial repair in a rat model. Int Urogynecol J 18:619–626

    Article  Google Scholar 

  • Kusuma GD, Abumaree MH, Pertile MD, Kalionis B (2018) Isolation and characterization of mesenchymal stem/stromal cells derived from human third trimester placental chorionic villi and decidua basalis. Methods Mol Biol 1710:247–266

    Article  CAS  PubMed  Google Scholar 

  • Kusuma GD, Manuelpillai U, Abumaree MH, Pertile MD, Brennecke SP, Kalionis B (2015) Mesenchymal stem cells reside in a vascular niche in the decidua basalis and are absent in remodelled spiral arterioles. Placenta 36:312–321

    Article  CAS  PubMed  Google Scholar 

  • Lee B-J, Kang D-W, Park H-Y, Song J-S, Kim J-M, Jang J-Y, Lee J-C, Wang S-G, Jung JS, Shin S-C (2016) Isolation and localization of mesenchymal stem cells in human palatine tonsil by W5C5 (SUSD2). Cell Physiol Biochem 38:83–93

    Article  CAS  PubMed  Google Scholar 

  • Lucciola R, Vrljicak P, Gurung S, Filby C, Darzi S, Muter J, Ott S, Brosens JJ, Gargett CE (2020) Impact of sustained transforming growth factor-β receptor inhibition on chromatin accessibility and gene expression in cultured human endometrial MSC. Front Cell Dev Biol 8:567610

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv F-J, Tuan RS, Cheung KM, Leung VY (2014) Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32:1408–1419

    Article  CAS  PubMed  Google Scholar 

  • Masuda H, Anwar SS, Bühring HJ, Rao JR, Gargett CE (2012) A novel marker of human endometrial mesenchymal stem-like cells. Cell Transplant 21:2201–2214

    Article  PubMed  Google Scholar 

  • Mukherjee S, Darzi S, Rosamilia A, Kadam V, Truong Y, Werkmeister JA, Gargett CE (2019) Blended nanostructured degradable mesh with endometrial mesenchymal stem cells promotes tissue integration and anti-inflammatory response in vivo for pelvic floor application. Biomacromol 20:454–468

    Article  CAS  Google Scholar 

  • Patel J, Seppanen E, Chong MS, Yeo JS, Teo EY, Chan JK, Fisk NM, Khosrotehrani K (2013) Prospective surface marker-based isolation and expansion of fetal endothelial colony-forming cells from human term placenta. Stem Cells Transl Med 2:839–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel J, Shafiee A, Wang W, Fisk NM, Khosrotehrani K (2014) Novel isolation strategy to deliver pure fetal-origin and maternal-origin mesenchymal stem cell (MSC) populations from human term placenta. Placenta 35:969–971

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Qin SQ, Kusuma GD, Al-Sowayan B, Pace RA, Isenmann S, Pertile MD, Gronthos S, Abumaree MH, Brennecke SP, Kalionis B (2016) Establishment and characterization of fetal and maternal mesenchymal stem/stromal cell lines from the human term placenta. Placenta 39:134–146

    Article  CAS  PubMed  Google Scholar 

  • Quirici N, Soligo D, Bossolasco P, Servida F, Lumini C, Deliliers GL (2002) Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol 30:783–791

    Article  CAS  PubMed  Google Scholar 

  • Rohart F, Mason EA, Matigian N, Mosbergen R, Korn O, Chen T, Butcher S, Patel J, Atkinson K, Khosrotehrani K (2016) A molecular classification of human mesenchymal stromal cells. Peer J 4:e1845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sabapathy V, Ravi S, Srivastava V, Srivastava A, Kumar S (2012) Long-term cultured human term placenta-derived mesenchymal stem cells of maternal origin displays plasticity. Stem Cells Int 2012

  • Sardesai VS, Shafiee A, Fisk NM, Pelekanos RA (2017) Avoidance of maternal cell contamination and overgrowth in isolating fetal chorionic villi mesenchymal stem cells from human term placenta. Stem Cells Transl Med 6:1070–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23:220–229

    Article  PubMed  Google Scholar 

  • Schwab KE, Gargett CE (2007) Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod 22:2903–2911

    Article  CAS  PubMed  Google Scholar 

  • Schwab KE, Hutchinson P, Gargett CE (2008) Identification of surface markers for prospective isolation of human endometrial stromal colony-forming cells. Hum Reprod 23:934–943

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704

    Article  PubMed  Google Scholar 

  • Sivasubramaniyan K, Harichandan A, Schumann S, Sobiesiak M, Lengerke C, Maurer A, Kalbacher H, Buhring HJ (2013) Prospective isolation of mesenchymal stem cells from human bone marrow using novel antibodies directed against Sushi domain containing 2. Stem Cells Dev 22:1944–1954

    Article  CAS  PubMed  Google Scholar 

  • Soncini M, Vertua E, Gibelli L, Zorzi F, Denegri M, Albertini A, Wengler GS, Parolini O (2007) Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med 1:296–305

    Article  CAS  PubMed  Google Scholar 

  • Su K, Edwards SL, Tan KS, White JF, Kandel S, Ramshaw JAM, Gargett CE, Werkmeister JA (2014) Induction of endometrial mesenchymal stem cells into tissue-forming cells suitable for fascial repair. Acta Biomater 10:5012–5020

    Article  CAS  PubMed  Google Scholar 

  • Ulrich C, Abruzzese T, Maerz JK, Ruh M, Amend B, Benz K, Rolauffs B, Abele H, Hart ML, Aicher WK (2015) Human placenta-derived CD146-positive mesenchymal stromal cells display a distinct osteogenic differentiation potential. Stem Cells Dev 24:1558–1569

    Article  CAS  PubMed  Google Scholar 

  • Ulrich D, Muralitharan R, Gargett CE (2013) Toward the use of endometrial and menstrual blood mesenchymal stem cells for cell-based therapies. Expert Opin Biol Ther 13:1387–1400

    Article  CAS  PubMed  Google Scholar 

  • Ulrich D, Tan KS, Deane J, Schwab K, Cheong A, Rosamilia A, Gargett CE (2014) Mesenchymal stem/stromal cells in post-menopausal endometrium. Hum Reprod 29:1895–1905

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chen S, Zhang C, Stegeman S, Pfaff-Amesse T, Zhang Y, Zhang W, Amesse L, Chen Y (2012) Human endometrial stromal stem cells differentiate into megakaryocytes with the ability to produce functional platelets. PLoS One 7:e44300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff EF, Wolff AB, Hongling D, Taylor HS (2007) Demonstration of multipotent stem cells in the adult human endometrium by in vitro chondrogenesis. Reprod Sci 14:524–533

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Grace Heo and Jenny Ryan for collection of human tissues; Angela Vais, Monash Histology Platform, for assistance with histology and specific staining; and Dr Sarah Creed and Dr Giulia Ballerin, Monash Micro Imaging, for their excellent technical support in confocal microscope imaging.

Funding

This work was supported by the National Health and Medical Research Council (NHMRC) of Australia Project Grants (No. 1159677 to CEG, SM, and JAW), Senior Research Fellowship (No. 1042298 to CEG), and Investigator Grant (No. 1173882 to CEG) and Science and Industrial Endowment Fund (PD16-122 to CEG, JW, and SM), Monash Graduate Scholarship (MK), Monash International Tuition Scholarship (MK), and the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline E. Gargett.

Ethics declarations

Ethical statement

All procedures performed in studies involving human participants were in accordance with the ethical standards of the National Health and Medical Research Council of Australia Guidelines as approved by Monash Health Human Research Ethics Committee (Ethics Number: 10103B) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All participants gave written informed consent. This article does not contain any studies with animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 278 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanmohammadi, M., Mukherjee, S., Darzi, S. et al. Identification and characterisation of maternal perivascular SUSD2+ placental mesenchymal stem/stromal cells. Cell Tissue Res 385, 803–815 (2021). https://doi.org/10.1007/s00441-021-03453-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03453-4

Keywords

Navigation