Skip to main content
Log in

The content of gonadotropin-releasing hormone (GnRH), kisspeptin, and estrogen receptors (ERα/ERβ) in the anteromedial hypothalamus displays daily variations throughout the rat estrous cycle

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The content of gonadotropin-releasing hormone (GnRH), its mRNA, and estrogen receptor alpha (ERα) and beta (ERβ) in the hypothalamus varies throughout the estrous cycle. Furthermore, the abundance of these molecules displays asymmetry between the right and left side. In the present study, we investigated the changes in the content of ERα, ERβ, kisspeptin, and GnRH by western blot in the left and right anteromedial hypothalamus, at four different times during each stage of the rat estrous cycle. The serum levels of the follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were also measured. ERα and ERβ levels changed depending on the stage of the estrous cycle, meanwhile that of kisspeptin was modified according to both the hour of the day and the stage of the cycle. Except in estrus day, ERβ was higher in the right hypothalamus, while ERα was similar in both sides. During both proestrus and estrus, the content of kisspeptin and GnRH was higher in the right hypothalamus. The highest levels of FSH and LH occurred at 17:00 h of proestrus. But at estrus, the highest FSH levels were observed at 08:00 h and the lowest at 17:00 h. Thus, the current results show that the content of ERα, ERβ, kisspeptin, and GnRH in the anteromedial hypothalamus are regulated as a function of the stage of the estrous cycle and the hour of the day. Furthermore, the content of these proteins is regularly higher in the right anteromedial hypothalamus, regardless of the stage of the cycle or time of the day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GnRH:

gonadotropin-releasing hormone

FSH:

follicle-stimulating hormone

LH:

luteinizing hormone

E2 :

17β-estradiol

ERα:

estrogen receptor alpha

ERβ:

estrogen receptor beta

3 V:

third ventricle

acp:

anterior commissure, posterior part

ADP:

anterodorsal preoptic nucleus

AHC:

anterior hypothalamic area, central part

Arc:

arcuate nucleus

AVPe:

anteroventral periventricular nucleus

DMD:

dorsomedial hypothalamic nucleus, dorsal part

MEE:

medial eminence, external layer

MnPO:

median preoptic nucleus

MPOL:

lateral part of medial preoptic nucleus

opt:

optic tract

ox:

optic chiasm

PaV:

paraventricular hypothalamic nucleus, ventral part

Pe:

periventricular nucleus

RCh:

retrochiasmatic area; sox, supraoptic decussation

VMH:

ventromedial hypothalamic nucleus

VMPO:

ventromedial preoptic nucleus

References

  • Adachi S, Yamada S, Takatsu Y, Matsui H, Kinoshita M, Takase K, Sugiura H, Ohtaki T, Matsumoto H, Uenoyama Y, Tsukamura H, Inoue K, Maeda K (2007) Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. J Reprod Dev 53:367–378

    CAS  PubMed  Google Scholar 

  • Arrieta-Cruz I, Librado-Osorio R, Flores A, Mendoza-Garcés L, Chavira R, Cárdenas M, Gutiérrez-Juárez R, Domínguez R, Cruz ME (2019) Estrogen receptors alpha and Beta in POA-AHA region regulate asymmetrically ovulation. Cell Mol Neurobiol 39:1139–1149. https://doi.org/10.1007/s10571-019-00708-1

    Article  CAS  PubMed  Google Scholar 

  • Arteaga-López PR, Domínguez R, Cerbón MA, Mendoza-Rodríguez CA, Cruz ME (2003) Differential mRNA expression of alpha and beta estrogen receptor isoforms and GnRH in the left and right side of the preoptic and anterior hypothalamic area during the estrous cycle of the rat. Endocrine 21:251–260

    PubMed  Google Scholar 

  • Bakalkin GY, Tsibezov VV, Sjutkin EA, Veselova SP, Novikov ID y Krivosheev OG (1984) Lateralization of LH-RH in rat hypothalamus. Brain Res 296:361–364

  • Bilban M, Ghaffari-Tabrizi N, Hintermann E, Bauer S, Molzer S, Zoratti C, Malli R, Sharabi A, Hiden U, Graier W, Knofler M, Andreae F, Wagner O, Quaranta V, Desoye G (2004) Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts. J Cell Sci 117:1319–1328

    CAS  PubMed  Google Scholar 

  • Bloch GJ, Kurth SM, Akesson TR, Micevych PE (1992) Estrogen-concentrating cells within cell groups of the medial preoptic area: sex differences and co-localization with galanin-immunoreactive cells. Brain Res 595:301–308

    CAS  PubMed  Google Scholar 

  • Cruz ME, Jaramillo LP, Domínguez R (1989) Asymmetric ovulatory response induced by unilateral implant of atropine in the anterior hypothalamus of the cyclic rat. J Endocrinol 123:437–439

    CAS  PubMed  Google Scholar 

  • Cruz ME, Morán JL, Jaramillo LP, Domínguez R (1990a) Differences in spontaneous ovulation in rats with unilateral lesion of the hypothalamus. Brain Res Bull 24:739–742

    CAS  PubMed  Google Scholar 

  • Cruz ME, Morán JL, Jaramillo LP, Domínguez R (1990b) Differential effects of unilateral hypothalamic lesion on ovulation and compensatory ovarian hypertrophy in hemiovariectomized adult rat. J Endocrinol 124:37–41

    CAS  PubMed  Google Scholar 

  • Dedes I (2012) Kisspeptins and the control of gonadotrophin secretion. Syst Biol Reprod Med 58:121–128. https://doi.org/10.3109/19396368.2011.651555

    Article  CAS  PubMed  Google Scholar 

  • Dubois SL, Acosta-Martínez M, DeJoseph MR, Wolfe A, Radovick S, Boehm U, Urban JH, Levine JE (2015) Positive, but not negative feedback actions of estradiol in adult female mice require estrogen receptor α in kisspeptin neurons. Endocrinology 156:1111–1120

    CAS  PubMed  Google Scholar 

  • Eyigor O, Lin W, Jennes L (2004) Identification of neurons in the female rat hypothalamus that express oestrogen receptor-alpha and vesicular glutamate transporter-2. J Neuroendocrinol 16:26–31

    CAS  PubMed  Google Scholar 

  • Fukuda M, Yamanouchi K, Nakano Y, Furuya M, Arai Y (1984) Hypothalamic laterality in regulating gonadotropic function: unilateral hypothalamic lesion and ovarian compensatory hypertrophy. Neurosci Lett 51:365–370

    CAS  PubMed  Google Scholar 

  • Garcia-Ovejero D, Veiga S, Garcia-Segura LM, Doncarlos LL (2002) Glial expression of estrogen and androgen receptors after rat brain injury. J Comp Neurol 450:256–2571

    CAS  PubMed  Google Scholar 

  • Gerendai I, Rotsztejn W, Marchetti B, Kordon C, Scapagnini U (1978) Unilateral ovariectomy- induced luteinizing hormone content changes in the two halves of the mediobasal hypothalamus. Neurosci Lett 9:333–336

    CAS  PubMed  Google Scholar 

  • Gore AC, Roberts JL (1997) Regulation of gonadotropin-releasing hormone gene expression in vivo and in vitro. Front Neuroendocrinol 18(2):209–245

    CAS  PubMed  Google Scholar 

  • Herbison AE, Theodosis DT (1992) Localization of oestrogen receptors in preoptic neurons containing neurotensin but not tyrosine hydroxylase, cholecystokinin or luteinizing hormone-releasing hormone in the male and female rat. Neuroscience 50:283–298

    CAS  PubMed  Google Scholar 

  • Herbison AE (1997) Estrogen regulation of GABA transmission in rat preoptic area. Brain Res Bull 44:321–326

    CAS  PubMed  Google Scholar 

  • Herbison AE (2015) Physiology of the adult gonadotropin-releasing hormone neuronal network. In: Knobil and Neill’s physiology of reproduction (eds), vol 1. Academic Press, St Louis, pp 399–467

    Google Scholar 

  • Hussain MA, Song WJ, Wolfe A (2015) There is Kisspeptin - and then there is Kisspeptin. Trends Endocrinol Metab 26:564–572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inase Y, Machida T (1992) Differential effects of right-sided and left-sided orquidectomy on lateral asymmetry of LH cells in the mouse brain. Brain Res 580:338–340

    CAS  PubMed  Google Scholar 

  • Ishii MN, Matsumoto K, Matsui H, Seki N, Matsumoto H, Ishikawa K, Chatani F, Watanabe G, Taya K (2013) Reduced responsiveness of kisspeptin neurons to estrogenic positive feedback associated with age-related disappearance of LH surge in middle-age female rats. Gen Comp Endocrinol 193:121–129

    CAS  PubMed  Google Scholar 

  • Kalló I, Butler JA, Barkovics-Kalló M, Goubillon ML, Coen CW (2001) Oestrogen receptor beta-immunoreactivity in gonadotropin releasing hormone-expressing neurones: regulation by oestrogen. Neuroendocrinology 13:741–748

    Google Scholar 

  • Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brézillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276:34631–34636

    CAS  PubMed  Google Scholar 

  • Leranth C, Shanabrough M, Horvath TL (1999) Estrogen receptor-alpha in the raphe serotonergic and supramammillary area calretinin-containing neurons of the female rat. Exp Brain Res 128:417–420

    CAS  PubMed  Google Scholar 

  • Marshall JC, Dalkin AC, Haisenleder DJ, Paul SJ, Ortolano GA, Kelch RP (1991) Gonadotropin-releasing hormone pulses: regulators of gonadotropin synthesis and ovulatory cycles. Recent Prog Horm Res 47:155–187

    CAS  PubMed  Google Scholar 

  • Melmed S, Polonsky KS, Larsen PR, Kronenberg HM (2016) Williams textbook of endocrinology. Elsevier

  • Morán JL, Cruz ME, Domínguez R (1994) Differences in the ovulatory response to unilateral lesions in the preoptic and anterior hypothalamic area performed on each day of the oestrus cycle of adult rat. Brain Res Bull 33:663–668

    PubMed  Google Scholar 

  • Muir AI, Chamberlain L, Elshourbagy NA, Michalovich D, Moore DJ, Calamari A, Szekeres PG, Sarau HM, Chambers JK, Murdock P, Steplewski K, Shabon U, Miller JE, Middleton SE, Darker JG, Larminie CG, Wilson S, Bergsma DJ, Emson P, Faull R, Philpott KL, Harrison DC (2001) AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem 276:28969–28975

    CAS  PubMed  Google Scholar 

  • Nance DM, Moger WH (1982) Ipsilateral hypothalamic deafferentation blocks the increase in serum FSH following hemicastration. Brain Res Bull 10:353–355

    Google Scholar 

  • Nance DM, Bhargava M, Myatt GA (1984) Further evidence for hypothalamic asymmetry in endocrine control of the ovary. Brain Res Bull 13:651–655

    CAS  PubMed  Google Scholar 

  • Navarro VM, Castellano JM, Fernández-Fernández R, Barreiro ML, Roa J, Sanchez-Criado JE, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M (2004) Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology 145:4565–4574

    CAS  PubMed  Google Scholar 

  • Navarro VM, Castellano JM, Fernández-Fernández R, Tovar S, Roa J, Mayen A, Nogueiras R, Vazquez MJ, Barreiro ML, Magni P, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M (2005) Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology 146:156–163

    CAS  PubMed  Google Scholar 

  • Okamura H, Yokosuka M, Hayashi S (1994) Induction of substance P-immunoreactivity by estrogen in neurons containing estrogen receptors in the anteroventral periventricular nucleus of female but not male rats. J Neuroendocrinol 6:609–615

    CAS  PubMed  Google Scholar 

  • Papaoiconomou E, Msaouel P, Makri A, Diamanti-Kandarakis E, Koutsilieris M (2011) The role of kisspeptin/GPR54 in the reproductive system. In Vivo 25:343–354

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates, 5th edn. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Pineda R, Garcia-Galiano D, Roseweir A, Romero M, Sanchez-Garrido MA, Ruiz-Pino F, Morgan K, Pinilla L, Millar RP, Tena-Sempere M (2010) Critical roles of kisspeptins in female puberty and preovulatory gonadotropin surges as revealed by a novel antagonist. Endocrinology 151:722–730

    CAS  PubMed  Google Scholar 

  • Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M (2012) Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev 3:1235–1316

    Google Scholar 

  • Polston EK, Simerly RB (2006) Ontogeny of the projections from the anteroventral periventricular nucleus of the hypothalamus in the female rat. J Comp Neurol 495:122–132

    PubMed  Google Scholar 

  • Putteeraj M, Soga T, Ubuka T, Parhar IS (2016) A "timed" Kiss is essential for reproduction. Front Endocrinol (Lausanne) 7:121

    Google Scholar 

  • Radovick S, Levine JE, Wolfe A (2012) Estrogenic regulation of the GnRH neuron. Front Endocrinol (Lausanne) 9(3):52

    Google Scholar 

  • Roa J, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M (2008a) New frontiers in kisspeptin/GPR54 physiology as fundamental gatekeepers of reproductive function. Front Neuroendocrinol 29:48–69

    CAS  PubMed  Google Scholar 

  • Roa J, Vigo E, Castellano JM, Gaytan F, García-Galiano D, Navarro VM, Aguilar E, Dijcks FA, Ederveen AG, Pinilla L, van Noort PI, Tena-Sempere M (2008b) Follicle-stimulating hormone responses to kisspeptin in the female rat at the preovulatory period: modulation by estrogen and progesterone receptors. Endocrinology 149:5783–5790

    CAS  PubMed  Google Scholar 

  • Roa J, Vigo E, Castellano JM, Gaytan F, Navarro VM, Aguilar E, Dijcks FA, Ederveen AG, Pinilla L, van Noort PI, Tena-Sempere M (2008c) Opposite roles of estrogen receptor (ER)-alpha and ERbeta in the modulation of luteinizing hormone responses to kisspeptin in the female rat: implications for the generation of the preovulatory surge. Endocrinology 149:1627–1637

    CAS  PubMed  Google Scholar 

  • Sánchez MA, Lopez GM, Cruz ME, Tapi R, Domínguez R (1994) Asymmetrical changes in the choline acetyltransferase activity in the preoptic-anterior hypothalamic area during the oestrous cycle of the rat. Neuroreport 5:433–434

    PubMed  Google Scholar 

  • Shughrue PJ, Scrimo PJ, Merchenthaler I (1998) Evidence for the colocalization of estrogen receptor-beta mRNA and estrogen receptor-alpha immunoreactivity in neurons of the rat forebrain. Endocrinol 139:5267–5270

    CAS  Google Scholar 

  • Simonian SX, Spratt DP, Herbison AE (1999) Identification and characterization of estrogen receptor alpha-containing neurons projecting to the vicinity of the gonadotropin-releasing hormone perikarya in the rostral preoptic area of the rat. J Comp Neurol 411:346–358

    CAS  PubMed  Google Scholar 

  • Smith JT, Dungan HM, Stoll EA, Gottsch ML, Braun RE, Eacker SM, Clifton DK, Steine RA (2005) Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology 146:2976–2984

    CAS  PubMed  Google Scholar 

  • Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA (2006) Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci 26:6687–6694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson EL, Patterson M, Murphy KG, Smith KL, Dhillo WS, Todd JF, Ghatei MA, Bloom SR (2004) Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic-pituitary-gonadal axis. J Neuroendocrinol 16:850–858

    CAS  PubMed  Google Scholar 

  • Turi GF, Liposits Z, Hrabovszky E (2008) Cholinergic afferents to gonadotropin releasing hormone neurons of the rat. Neurochem Int 52:723–738

    CAS  PubMed  Google Scholar 

  • Yip S, Boehm U, Herbison AE, Campbell RE (2015) Conditional viral tract tracing delineates the projections of the distinct Kisspeptin neuron populations to gonadotropin-releasing hormone (GnRH) neurons in the mouse. Endocrinology 156:2582–2594

    CAS  PubMed  Google Scholar 

  • Yuri K, Kawata M (1994) Estrogen receptor-immunoreactive neurons contain calcitonin gene-related peptide, methionine-enkephalin or tyrosine hydroxylase in the female rat preoptic area. Neurosci Res 21:135–141

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Graduate Program in Biological Sciences from National Autonomous University of Mexico for the support provided for this study. This work is part of the academic requirements requested to Esteban Olvera-Juárez for obtaining The Doctor of Philosophy in Biological Sciences degree. We thank to Cristian Ramírez-Guillén, Daniel Torres-Ramírez, and Gilberto García-Hernández for their technical assistance.

Funding

The study was supported by grant from UNAM-DGAPA-PAPIIT No. IN215619 to MEC and Fellowship from the Consejo Nacional de Ciencia y Tecnología México, CVU-370898 to EOJ.

Author information

Authors and Affiliations

Author notes

  1. María-Esther Cruz is deceased. This paper is dedicated to her memory.

    • María-Esther Cruz
Authors

Contributions

EOJ and MEC designed the research. EOJ, AF, IAC, LMG, HMC, HELV, and MC performed the research. CCS, IAC, RD, RGJ, and MEC participated in the analysis and discussion of the results. CCS, IAC, RGJ, and MEC wrote the manuscript. All authors made critical revision of the manuscript.

Corresponding author

Correspondence to Isabel Arrieta-Cruz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The animal research protocol was approved by the local Ethics Committee of Facultad de Estudios Superiores Zaragoza, UNAM (license number: FES/DEPUCI/236/14).

Statement on the welfare of animals

All animal experiments were performed in compliance with the Mexican laws for animal handling, Official Norm NOM-062-ZOO-1999, which instead conforms to international guidelines.

Additional information

This article is dedicated to the memory of our beloved colleague, who recently passed away.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olvera-Juárez, E., Silva, CC., Flores, A. et al. The content of gonadotropin-releasing hormone (GnRH), kisspeptin, and estrogen receptors (ERα/ERβ) in the anteromedial hypothalamus displays daily variations throughout the rat estrous cycle. Cell Tissue Res 381, 451–460 (2020). https://doi.org/10.1007/s00441-020-03258-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03258-x

Keywords

Navigation