Skip to main content

Advertisement

Log in

Animal models to study the role of pulmonary intravascular macrophages in spontaneous and induced acute pancreatitis

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Acute necrotizing pancreatitis (ANP) is a common gastrointestinal cause of emergency admissions in dogs and humans and can lead to a systemic inflammatory response syndrome resulting in multiple organ dysfunction syndrome. Among the various complications associated with ANP, acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a major contributor leading to high mortality rates associated with severe acute pancreatitis (AP) in human patients. The incidence of ALI/ARDS in ANP dogs is not well-characterized in spontaneous AP and there are no models to study it in rodent models. Most of the data related to AP comes from rodent models of AP, which may not always represent the true mechanisms occurring in the lungs of dogs or humans with ANP. Therefore, this manuscript provides a review of current and potential models to study the role of pulmonary intravascular macrophages (PIMs) in acute pancreatitis. Recently, we characterized lung inflammation in clinical cases of AP in dogs and found significant recruitment of PIMs which have been credited as pro-inflammatory cells in species such as cattle, horse, pigs, and sheep that normally have them. Considering the pro-inflammatory roles of constitutive or induced PIMs, we investigated whether a well-established mouse model of ANP has induced PIMs. We found induced PIMs in L-arginine-induced ANP in mouse and that MCP-1 is important in PIM induction in this model. Taken together, now we summarize information on spontaneous ANP in dog and a mouse model of induced ANP to study mechanisms of lung dysfunction and the role of PIMs during ANP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aharonson-Raz K, Singh B (2010) Pulmonary intravascular macrophages and endotoxin-induced pulmonary pathophysiology in horses. Can J Vet Res 74:45–49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aho HJ, Koskensalo SM, Nevalainen TJ (1980) Experimental pancreatitis in the rat. Sodium taurocholate-induced acute haemorrhagic pancreatitis. Scand J Gastroenterol 15:411–416

    Article  CAS  PubMed  Google Scholar 

  • Akita S, Kubota K, Kobayashi A, Misawa R, Shimizu A, Nakata T, Yokoyama T, Takahashi M, Miyagawa S (2012) Role of bone marrow cells in the development of pancreatic fibrosis in a rat model of pancreatitis induced by a choline-deficient/ethionine-supplemented diet. Biochem Biophys Res Commun 420:743–749

    Article  CAS  PubMed  Google Scholar 

  • Ammori BJ, Leeder PC, King RF, Barclay GR, Martin IG, Larvin M, McMahon MJ (1999) Early increase in intestinal permeability in patients with severe acute pancreatitis: correlation with endotoxemia, organ failure, and mortality. J Gastrointest Surg 3:252–262

    Article  CAS  PubMed  Google Scholar 

  • Ang AD, Adhikari S, Ng SW, Bhatia M (2009) Expression of nitric oxide synthase isoforms and nitric oxide production in acute pancreatitis and associated lung injury. Pancreatol 9:150–159

    Article  CAS  Google Scholar 

  • Atwal OS, Saldanha KA (1985) Erythrophagocytosis in alveolar capillaries of goat lung: ultrastructural properties of blood monocytes. Acta Anat 124:245–254

    Article  CAS  PubMed  Google Scholar 

  • Atwal OS, Singh B, Staempfli H, Minhas K (1992) Presence of pulmonary intravascular macrophages in the equine lung: some structuro-functional properties. Anat Rec 234:530–540

    Article  CAS  PubMed  Google Scholar 

  • Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Sarr MG, Tsiotos GG, Vege SS, Acute Pancreatitis Classification Working G (2013) Classification of acute pancreatitis--2012: revision of the Atlanta classification and definitions by international consensus. Gut 62:102–111

    Article  PubMed  Google Scholar 

  • Baumann B, Wagner M, Aleksic T, von Wichert G, Weber CK, Adler G, Wirth T (2007) Constitutive IKK2 activation in acinar cells is sufficient to induce pancreatitis in vivo. J Clin Invest 117:1502–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedoret D, Wallemacq H, Marichal T, Desmet C, Quesada Calvo F, Henry E, Closset R, Dewals B, Thielen C, Gustin P, de Leval L, Van Rooijen N, Le Moine A, Vanderplasschen A, Cataldo D, Drion PV, Moser M, Lekeux P, Bureau F (2009) Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J Clin Invest 119:3723–3738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benard C (1856) Leçon de Physilogie Experimentale. Bailliere, Paris

    Google Scholar 

  • Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824

    Article  CAS  PubMed  Google Scholar 

  • Bernardo A, Ball C, Nolasco L, Choi H, Moake JL, Dong JF (2005) Platelets adhered to endothelial cell-bound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. J Thromb Haemost 3:562–570

    Article  CAS  PubMed  Google Scholar 

  • Bhatia M, Saluja AK, Hofbauer B, Lee HS, Frossard JL, Steer ML (1998) The effects of neutrophil depletion on a completely noninvasive model of acute pancreatitis-associated lung injury. Int J Pancreatol 24:77–83

    Article  CAS  PubMed  Google Scholar 

  • Bhatia M, Ramnath RD, Chevali L, Guglielmotti A (2005) Treatment with bindarit, a blocker of MCP-1 synthesis, protects mice against acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 288:G1259–G1265

    Article  CAS  PubMed  Google Scholar 

  • Biczo G, Hegyi P, Berczi S, Dosa S, Hracsko Z, Varga IS, Ivanyi B, Venglovecz V, Wittmann T, Takacs T, Rakonczay Z Jr (2010) Inhibition of arginase activity ameliorates L-arginine-induced acute pancreatitis in rats. Pancreas 39:868–874

    Article  CAS  PubMed  Google Scholar 

  • Bishop MA, Xenoulis PG, Levinski MD, Suchodolski JS, Steiner JM (2010) Identification of variants of the SPINK1 gene and their association with pancreatitis in miniature schnauzers. Am J Vet Res 71:527–533

    Article  CAS  PubMed  Google Scholar 

  • Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11:889–896

    Article  CAS  PubMed  Google Scholar 

  • Bonfield TL, Konstan MW, Burfeind P, Panuska JR, Hilliard JB, Berger M (1995) Normal bronchial epithelial cells constitutively produce the anti-inflammatory cytokine interleukin-10, which is downregulated in cystic fibrosis. Am J Respir Cell Mol Biol 13:257–261

    Article  CAS  PubMed  Google Scholar 

  • Brain JD (1992) Mechanisms, measurement, and significance of lung macrophage function. Environ Health Perspect 97:5–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brain JD, Molina RM, DeCamp MM, Warner AE (1999) Pulmonary intravascular macrophages: their contribution to the mononuclear phagocyte system in 13 species. Am J Phys 276:L146–L154

    CAS  Google Scholar 

  • Brisinda G, Vanella S, Crocco A, Mazzari A, Tomaiuolo P, Santullo F, Grossi U, Crucitti A (2011) Severe acute pancreatitis: advances and insights in assessment of severity and management. Eur J Gastroenterol Hepatol 23:541–551

    Article  PubMed  Google Scholar 

  • Buchler M, Friess H, Uhl W, Beger HG (1992) Clinical relevance of experimental acute pancreatitis. Eur Surg Res 24(Suppl 1):85–88

    PubMed  Google Scholar 

  • Buter A, Imrie CW, Carter CR, Evans S, McKay CJ (2002) Dynamic nature of early organ dysfunction determines outcome in acute pancreatitis. Br J Surg 89:298–302

    Article  CAS  PubMed  Google Scholar 

  • Carrasco L, Nunez A, Salguero FJ, Diaz San Segundo F, Sanchez-Cordon P, Gomez-Villamandos JC, Sierra MA (2002) African swine fever: expression of interleukin-1 alpha and tumour necrosis factor-alpha by pulmonary intravascular macrophages. J Comp Pathol 126:194–201

    Article  CAS  PubMed  Google Scholar 

  • Chang SW, Ohara N (1994) Chronic biliary obstruction induces pulmonary intravascular phagocytosis and endotoxin sensitivity in rats. J Clin Invest 94:2009–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charavaryamath C, Janardhan KS, Caldwell S, Singh B (2006) Pulmonary intravascular monocytes/macrophages in a rat model of sepsis. Anat Rec A Discov Mol Cell Evol Biol 288:1259–1271

    Article  PubMed  CAS  Google Scholar 

  • Chen ZT, Li SL, Cai EQ, Wu WL, Jin JS, Zhu B (2003) LPS induces pulmonary intravascular macrophages producing inflammatory mediators via activating NF-kappaB. J Cell Biochem 89:1206–1214

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Zhao J, He SG, Song MM, Li ZH, Zhang YW (2003) The role of nitric oxide in lung injury associated with acute necrotizing pancreatitis. Zhonghua wai ke za zhi [Chin J Surg] 41:336–339

    Google Scholar 

  • Cheng S, Yan WM, Yang B, Shi JD, Song MM, Zhao Y (2010) A crucial role of nitric oxide in acute lung injury secondary to the acute necrotizing pancreatitis. Hum Exp Toxicol 29:329–337

    Article  CAS  PubMed  Google Scholar 

  • Chitko-McKown CG, Chapes SK, Brown RE, Phillips RM, McKown RD, Blecha F (1991) Porcine alveolar and pulmonary intravascular macrophages: comparison of immune functions. J Leukoc Biol 50:364–372

    Article  CAS  PubMed  Google Scholar 

  • Chvanov M, Petersen OH, Tepikin A (2005) Free radicals and the pancreatic acinar cells: role in physiology and pathology. Philos Trans R Soc Lond Ser B Biol Sci 360:2273–2284

    Article  CAS  Google Scholar 

  • Closa D, Sabater L, Fernandez-Cruz L, Prats N, Gelpi E, Rosello-Catafau J (1999) Activation of alveolar macrophages in lung injury associated with experimental acute pancreatitis is mediated by the liver. Ann Surg 229:230–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook AK, Breitschwerdt EB, Levine JF, Bunch SE, Linn LO (1993) Risk factors associated with acute pancreatitis in dogs: 101 cases (1985-1990). J Am Vet Med Assoc 203:673–679

    CAS  PubMed  Google Scholar 

  • Crocker SH, Eddy DO, Obenauf RN, Wismar BL, Lowery BD (1981) Bacteremia: host-specific lung clearance and pulmonary failure. J Trauma 21:215–220

    Article  CAS  PubMed  Google Scholar 

  • Dabrowski A, Gabryelewicz A (1994) Nitric oxide contributes to multiorgan oxidative stress in acute experimental pancreatitis. Scand J Gastroenterol 29:943–948

    Article  CAS  PubMed  Google Scholar 

  • Dawra R, Sharif R, Phillips P, Dudeja V, Dhaulakhandi D, Saluja AK (2007) Development of a new mouse model of acute pancreatitis induced by administration of L-arginine. Am J Physiol Gastrointest Liver Physiol 292:G1009–G1018

    Article  CAS  PubMed  Google Scholar 

  • Dawra R, Sah RP, Dudeja V, Rishi L, Talukdar R, Garg P, Saluja AK (2011) Intra-acinar trypsinogen activation mediates early stages of pancreatic injury but not inflammation in mice with acute pancreatitis. Gastroenterology 141(2210–2217):e2212

    Google Scholar 

  • DeCamp MM, Warner AE, Molina RM, Brain JD (1992) Hepatic versus pulmonary uptake of particles injected into the portal circulation in sheep. Endotoxin escapes hepatic clearance causing pulmonary inflammation. Am Rev Respir Dis 146:224–231

    Article  CAS  PubMed  Google Scholar 

  • Dehring DJ, Wismar BL (1989) Intravascular macrophages in pulmonary capillaries of humans. Am Rev Respir Dis 139:1027–1029

    Article  CAS  PubMed  Google Scholar 

  • Dillon AR, Warner AE, Brawner W, Hudson J, Tillson M (2008) Activity of pulmonary intravascular macrophages in cats and dogs with and without adult Dirofilaria immitis. Vet Parasitol 158:171–176

    Article  CAS  PubMed  Google Scholar 

  • DiMagno MJ (2007) Nitric oxide pathways and evidence-based perturbations in acute pancreatitis. Pancreatol 7:403–408

    Article  CAS  Google Scholar 

  • DiMagno MJ, Hao Y, Tsunoda Y, Williams JA, Owyang C (2004) Secretagogue-stimulated pancreatic secretion is differentially regulated by constitutive NOS isoforms in mice. Am J Physiol Gastrointest Liver Physiol 286:G428–G436

    Article  CAS  PubMed  Google Scholar 

  • Dobosz M, Hac S, Mionskowska L, Dymecki D, Dobrowolski S, Wajda Z (2005) Organ microcirculatory disturbances in experimental acute pancreatitis. A role of nitric oxide. Physiol Res 54:363–368

    CAS  PubMed  Google Scholar 

  • Dressel TD, Goodale RL Jr, Arneson MA, Borner JW (1979) Pancreatitis as a complication of anticholinesterase insecticide intoxication. Ann Surg 189:199–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edelson JD, Vadas P, Villar J, Mullen JB, Pruzanski W (1991) Acute lung injury induced by phospholipase A2. Structural and functional changes. Am Rev Respir Dis 143:1102–1109

    Article  CAS  PubMed  Google Scholar 

  • Fink GW, Norman JG (1997) Specific changes in the pancreatic expression of the interleukin 1 family of genes during experimental acute pancreatitis. Cytokine 9:1023–1027

    Article  CAS  PubMed  Google Scholar 

  • Foitzik T, Hotz HG, Schmidt J, Klar E, Warshaw AL, Buhr HJ (1995) Effect of microcirculatory perfusion on distribution of trypsinogen activation peptides in acute experimental pancreatitis. Dig Dis Sci 40:2184–2188

    Article  CAS  PubMed  Google Scholar 

  • Foitzik T, Eibl G, Hotz B, Hotz H, Kahrau S, Kasten C, Schneider P, Buhr HJ (2002) Persistent multiple organ microcirculatory disorders in severe acute pancreatitis: experimental findings and clinical implications. Dig Dis Sci 47:130–138

    Article  CAS  PubMed  Google Scholar 

  • Frossard JL, Pastor CM (2002) Experimental acute pancreatitis: new insights into the pathophysiology. Front Biosci 7:d275–d287

    PubMed  Google Scholar 

  • Gea-Sorli S, Guillamat R, Serrano-Mollar A, Closa D (2011) Activation of lung macrophage subpopulations in experimental acute pancreatitis. J Pathol 223:417–424

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Suri SS, Janardhan KS, Caldwell S, Duke T, Singh B (2008) Role of pulmonary intravascular macrophages in endotoxin-induced lung inflammation and mortality in a rat model. Respir Res 9:69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gloor B, Blinman TA, Rigberg DA, Todd KE, Lane JS, Hines OJ, Reber HA (2000) Kupffer cell blockade reduces hepatic and systemic cytokine levels and lung injury in hemorrhagic pancreatitis in rats. Pancreas 21:414–420

    Article  CAS  PubMed  Google Scholar 

  • Gong ZY, Tang YQ (2002) Onset time of complications in patients with severe acute pancreatitis receiving nonoperative therapy. Hepatobil Pancreat Dis Int 1:143–145

    Google Scholar 

  • Gorelick FS, Lerch MM (2017) Do animal models of acute pancreatitis reproduce human disease? Cell Mol Gastroenterol Hepatol 4:251–262

    Article  PubMed  PubMed Central  Google Scholar 

  • Gronroos JM, Nevalainen TJ (1992) Increased concentrations of synovial-type phospholipase A2 in serum and pulmonary and renal complications in acute pancreatitis. Digestion 52:232–236

    Article  CAS  PubMed  Google Scholar 

  • Guice KS, Oldham KT, Johnson KJ, Kunkel RG, Morganroth ML, Ward PA (1988) Pancreatitis-induced acute lung injury. An ARDS model. Ann Surg 208:71–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han B, Ji B, Logsdon CD (2001) CCK independently activates intracellular trypsinogen and NF-kappaB in rat pancreatic acinar cells. Am J Phys Cell Phys 280:C465–C472

    CAS  Google Scholar 

  • Hofbauer B, Saluja AK, Lerch MM, Bhagat L, Bhatia M, Lee HS, Frossard JL, Adler G, Steer ML (1998) Intra-acinar cell activation of trypsinogen during caerulein-induced pancreatitis in rats. Am J Phys 275:G352–G362

    Article  CAS  Google Scholar 

  • Horiguchi T, Enzan K, Kawamura K, Suzuki M (1996) Pulmonary responses to heparin-protamine complexes: the effects of age and species. J Appl Physiol 80:56–61

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Liu Y, Daniluk J, Gaiser S, Chu J, Wang H, Li ZS, Logsdon CD, Ji B (2013) Activation of nuclear factor-kappaB in acinar cells increases the severity of pancreatitis in mice. Gastroenterology 144:202–210

    Article  CAS  PubMed  Google Scholar 

  • Interiano B, Stuard ID, Hyde RW (1972) Acute respiratory distress syndrome in pancreatitis. Ann Intern Med 77:923–926

    Article  CAS  PubMed  Google Scholar 

  • Jia G, Xiaoxiang W, Ruijie L, Xiaoxin Z, Xiaonan Y, Qing X, Ping X (2015) Effect of Chaiqinchengqi decoction on inositol requiring enzyme 1alpha in alveolar macrophages of dogs with acute necrotising pancreatitis induced by sodium taurocholate. J Tradit Chin Med 35:434–439

    Article  PubMed  Google Scholar 

  • Jin Y, Bai Y, Li Q, Bhugul PA, Huang X, Liu L, Pan L, Ni H, Chen B, Sun H, Zhang Q, Hehir M, Zhou M (2016) Reduced pancreatic exocrine function and organellar disarray in a canine model of acute pancreatitis. PLoS One 11:e0148458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juarez E, Nunez C, Sada E, Ellner JJ, Schwander SK, Torres M (2010) Differential expression of Toll-like receptors on human alveolar macrophages and autologous peripheral monocytes. Respir Res 11:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanaji S, Fahs SA, Shi Q, Haberichter SL, Montgomery RR (2012) Contribution of platelet vs. endothelial VWF to platelet adhesion and hemostasis. J Thromb Haemost 10:1646–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawashima M, Kuwamura M, Takeya M, Yamate J (2004) Morphologic characteristics of pulmonary macrophages in cetaceans: particular reference to pulmonary intravascular macrophages as a newly identified type. Vet Pathol 41:682–686

    Article  CAS  PubMed  Google Scholar 

  • Keck T, Friebe V, Warshaw AL, Antoniu BA, Waneck G, Benz S, Hopt UT, Fernandez-del-Castillo C (2005) Pancreatic proteases in serum induce leukocyte-endothelial adhesion and pancreatic microcirculatory failure. Pancreatol 5:241–250

    Article  CAS  Google Scholar 

  • Klingensmith WC 3rd, Tsan MF, Wagner HN Jr (1976) Factors affecting the uptake of 99mTc-sulfur colloid by the lung and kidney. J Nucl Med 17:681–684

    CAS  PubMed  Google Scholar 

  • Klingensmith WC 3rd, Yang SL, Wagner HN Jr (1978) Lung uptake of Tc-99m sulfur colloid in liver and spleen imaging. J Nucl Med 19:31–35

    PubMed  Google Scholar 

  • Konturek SJ, Bilski J, Konturek PK, Cieszkowski M, Pawlik W (1993) Role of endogenous nitric oxide in the control of canine pancreatic secretion and blood flow. Gastroenterology 104:896–902

    Article  CAS  PubMed  Google Scholar 

  • Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, Sahgal N, Hussell T, Feldmann M, Udalova IA (2011) IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol 12:231–238

    Article  CAS  PubMed  Google Scholar 

  • Lampel M, Kern HF (1977) Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue. Virchows Arch A Pathol Anat Histol 373:97–117

    Article  CAS  PubMed  Google Scholar 

  • Lem KY, Fosgate GT, Norby B, Steiner JM (2008) Associations between dietary factors and pancreatitis in dogs. J Am Vet Med Assoc 233:1425–1431

    Article  PubMed  Google Scholar 

  • Lerch MM, Gorelick FS (2013) Models of acute and chronic pancreatitis. Gastroenterology 144:1180–1193

    Article  PubMed  Google Scholar 

  • Lim SY, Nakamura K, Morishita K, Sasaki N, Murakami M, Osuga T, Ohta H, Yamasaki M, Takiguchi M (2014) Qualitative and quantitative contrast-enhanced ultrasonographic assessment of cerulein-induced acute pancreatitis in dogs. J Vet Intern Med 28:496–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HB, Cui NQ, Li DH, Chen C (2006) Role of Kupffer cells in acute hemorrhagic necrotizing pancreatitis-associated lung injury of rats. World J Gastroenterol 12:403–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardi B, Estes LW, Longnecker DS (1975) Acute hemorrhagic pancreatitis (massive necrosis) with fat necrosis induced in mice by DL-ethionine fed with a choline-deficient diet. Am J Pathol 79:465–480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lomis TJ, Siffring CW, Chalasani S, Ziegler DW, Lentz KE, Stauffer KE, McMillan A, Agarwal N, Lowenstein CJ, Rhoads JE Jr (1995) First place winner of the Conrad Jobst Award in the gold medal paper competition. Nitric oxide synthase inhibitors N-monomethylarginine and aminoguanidine prevent the progressive and severe hypotension associated with a rat model of pancreatitis. Am Surg 61:7–10

    CAS  PubMed  Google Scholar 

  • Longworth KE, Jarvis KA, Tyler WS, Steffey EP, Staub NC (1994) Pulmonary intravascular macrophages in horses and ponies. Am J Vet Res 55:382–388

    CAS  PubMed  Google Scholar 

  • Longworth KE, Albertine KH, Staub NC (1996) Ultrastructural quantification of pulmonary intravascular macrophages in newborn and 2-week-old lambs. Anat Rec 246:238–244

    Article  CAS  PubMed  Google Scholar 

  • Lopez A, Lane IF, Hanna P (1995) Adult respiratory distress syndrome in a dog with necrotizing pancreatitis. Can Vet J Rev Vet Can 36:240–241

    CAS  Google Scholar 

  • Makhija R, Kingsnorth AN (2002) Cytokine storm in acute pancreatitis. J Hepato-Biliary-Pancreat Surg 9:401–410

    Article  Google Scholar 

  • Mansfield C (2012a) Acute pancreatitis in dogs: advances in understanding, diagnostics, and treatment. Top Comp Animal Med 27:123–132

    Article  Google Scholar 

  • Mansfield C (2012b) Pathophysiology of acute pancreatitis: potential application from experimental models and human medicine to dogs. J Vet Intern Med 26:875–887

    Article  PubMed  Google Scholar 

  • Mansfield CS, James FE, Robertson ID (2008) Development of a clinical severity index for dogs with acute pancreatitis. J Am Vet Med Assoc 233:936–944

    Article  PubMed  Google Scholar 

  • Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  CAS  PubMed  Google Scholar 

  • Mikami Y, Takeda K, Shibuya K, Qiu-Feng H, Egawa S, Sunamura M, Matsuno S (2002) Peritoneal inflammatory cells in acute pancreatitis: relationship of infiltration dynamics and cytokine production with severity of illness. Surgery 132:86–92

    Article  PubMed  Google Scholar 

  • Mizunuma T, Kawamura S, Kishino Y (1984) Effects of injecting excess arginine on rat pancreas. J Nutr 114:467–471

    Article  CAS  PubMed  Google Scholar 

  • Molero X, Guarner F, Salas A, Mourelle M, Puig V, Malagelada JR (1995) Nitric oxide modulates pancreatic basal secretion and response to cerulein in the rat: effects in acute pancreatitis. Gastroenterology 108:1855–1862

    Article  CAS  PubMed  Google Scholar 

  • Molina RM, Brain JD (2007) In vivo comparison of cat alveolar and pulmonary intravascular macrophages: phagocytosis, particle clearance, and cytoplasmic motility. Exp Lung Res 33:53–70

    Article  CAS  PubMed  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuschwander-Tetri BA, Burton FR, Presti ME, Britton RS, Janney CG, Garvin PR, Brunt EM, Galvin NJ, Poulos JE (2000) Repetitive self-limited acute pancreatitis induces pancreatic fibrogenesis in the mouse. Dig Dis Sci 45:665–674

    Article  CAS  PubMed  Google Scholar 

  • Nevalainen TJ, Hietaranta AJ, Gronroos JM (1999) Phospholipase A2 in acute pancreatitis: new biochemical and pathological aspects. Hepato-gastroenterology 46:2731–2735

    CAS  PubMed  Google Scholar 

  • Niederau C, Ferrell LD, Grendell JH (1985) Caerulein-induced acute necrotizing pancreatitis in mice: protective effects of proglumide, benzotript, and secretin. Gastroenterology 88:1192–1204

    Article  CAS  PubMed  Google Scholar 

  • Nordback I, Teerenhovi O, Auvinen O, Koivula T, Thuren T, Kinnunen P, Eskola J, Nanto V (1989) Human pancreatic phospholipase A2 in acute necrotizing pancreatitis. Digestion 42:128–134

    Article  CAS  PubMed  Google Scholar 

  • Norman JG, Fink GW, Denham W, Yang J, Carter G, Sexton C, Falkner J, Gower WR, Franz MG (1997) Tissue-specific cytokine production during experimental acute pancreatitis. A probable mechanism for distant organ dysfunction. Dig Dis Sci 42:1783–1788

    Article  CAS  PubMed  Google Scholar 

  • Offenstadt G, Pinta P, Masliah J, Alcindor LG, Hericord P, Amstutz P (1981) Phospholipase and prophospholipase activities in bronchoalveolar lavage fluid in severe acute pulmonary disease with or without ARDS. Intensive Care Med 7:285–290

    Article  CAS  PubMed  Google Scholar 

  • Papa K, Mathe A, Abonyi-Toth Z, Sterczer A, Psader R, Hetyey C, Vajdovich P, Voros K (2011) Occurrence, clinical features and outcome of canine pancreatitis (80 cases). Acta Vet Hung 59:37–52

    Article  PubMed  Google Scholar 

  • Parbhakar OP, Duke T, Townsend HG, Singh B (2004) Immunophenotypic characterization and depletion of pulmonary intravascular macrophages of horses. Vet Res 35:39–51

    Article  PubMed  Google Scholar 

  • Parbhakar OP, Duke T, Townsend HG, Singh B (2005) Depletion of pulmonary intravascular macrophages partially inhibits lipopolysaccharide-induced lung inflammation in horses. Vet Res 36:557–569

    Article  PubMed  Google Scholar 

  • Pendu R, Terraube V, Christophe OD, Gahmberg CG, de Groot PG, Lenting PJ, Denis CV (2006) P-selectin glycoprotein ligand 1 and beta2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor. Blood 108:3746–3752

    Article  CAS  PubMed  Google Scholar 

  • Pezzilli R, Billi P, Miniero R, Fiocchi M, Cappelletti O, Morselli-Labate AM, Barakat B, Sprovieri G, Miglioli M (1995) Serum interleukin-6, interleukin-8, and beta 2-microglobulin in early assessment of severity of acute pancreatitis. Comparison with serum C-reactive protein. Dig Dis Sci 40:2341–2348

    Article  CAS  PubMed  Google Scholar 

  • Que RS, Cao LP, Ding GP, Hu JA, Mao KJ, Wang GF (2010) Correlation of nitric oxide and other free radicals with the severity of acute pancreatitis and complicated systemic inflammatory response syndrome. Pancreas 39:536–540

    Article  CAS  PubMed  Google Scholar 

  • Rakonczay Z Jr, Hegyi P, Dosa S, Ivanyi B, Jarmay K, Biczo G, Hracsko Z, Varga IS, Karg E, Kaszaki J, Varro A, Lonovics J, Boros I, Gukovsky I, Gukovskaya AS, Pandol SJ, Takacs T (2008) A new severe acute necrotizing pancreatitis model induced by L-ornithine in rats. Crit Care Med 36:2117–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renner IG, Wisner JR Jr, Rinderknecht H (1983) Protective effects of exogenous secretin on ceruletide-induced acute pancreatitis in the rat. J Clin Invest 72:1081–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinderknecht H (1986) Activation of pancreatic zymogens. Normal activation, premature intrapancreatic activation, protective mechanisms against inappropriate activation. Dig Dis Sci 31:314–321

    Article  CAS  PubMed  Google Scholar 

  • Sah RP, Dawra RK, Saluja AK (2013) New insights into the pathogenesis of pancreatitis. Curr Opin Gastroenterol 29:523–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sailai Y, Yu X, Baiheti P, Tang H, Li Y, Xu M (2010) Influence of nuclear factor kappaB activation on inflammatory mediators of alveolar macrophages in rats with acute necrotizing pancreatitis. J Investig Med 58:38–42

    Article  CAS  PubMed  Google Scholar 

  • Saka M, Tuzun A, Ates Y, Bagci S, Karaeren N, Dagalp K (2004) Acute pancreatitis possibly due to arginine use: a case report. Turk J Gastroenterol 15:56–58

    PubMed  Google Scholar 

  • Saloman JL, Albers KM, Cruz-Monserrate Z, Davis BM, Edderkaoui M, Eibl G, Epouhe AY, Gedeon JY, Gorelick FS, Grippo PJ, Groblewski GE, Husain SZ, Lai KKY, Pandol SJ, Uc A, Wen L, Whitcomb DC (2019) Animal models: challenges and opportunities to determine optimal experimental models of pancreatitis and pancreatic cancer. Pancreas 48:759–779

    Article  PubMed  PubMed Central  Google Scholar 

  • Saluja AK, Steer MLP (1999) Pathophysiology of pancreatitis. Role of cytokines and other mediators of inflammation. Digestion 60(Suppl 1):27–33

    Article  CAS  PubMed  Google Scholar 

  • Sandoval D, Gukovskaya A, Reavey P, Gukovsky S, Sisk A, Braquet P, Pandol SJ, Poucell-Hatton S (1996) The role of neutrophils and platelet-activating factor in mediating experimental pancreatitis. Gastroenterology 111:1081–1091

    Article  CAS  PubMed  Google Scholar 

  • Sarr MG (2013) 2012 revision of the Atlanta classification of acute pancreatitis. Pol Arch Med Wewn 123:118–124

    PubMed  Google Scholar 

  • Sarr MG, Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Tsiotos GG, Vege SS (2013) The new revised classification of acute pancreatitis 2012. Surg Clin North Am 93:549–562

    Article  PubMed  Google Scholar 

  • Schneberger D, Caldwell S, Suri SS, Singh B (2009) Expression of toll-like receptor 9 in horse lungs. Anat Rec 292:1068–1077

    Article  CAS  Google Scholar 

  • Schneberger D, Aharonson-Raz K, Singh B (2011a) Monocyte and macrophage heterogeneity and Toll-like receptors in the lung. Cell Tissue Res 343:97–106

    Article  CAS  PubMed  Google Scholar 

  • Schneberger D, Lewis D, Caldwell S, Singh B (2011b) Expression of toll-like receptor 9 in lungs of pigs, dogs and cattle. Int J Exp Pathol 92:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sendler M, Dummer A, Weiss FU, Kruger B, Wartmann T, Scharffetter-Kochanek K, van Rooijen N, Malla SR, Aghdassi A, Halangk W, Lerch MM, Mayerle J (2013) Tumour necrosis factor alpha secretion induces protease activation and acinar cell necrosis in acute experimental pancreatitis in mice. Gut 62:430–439

    Article  CAS  PubMed  Google Scholar 

  • Sethi RS, Brar RS, Singh O, Singh B (2011) Immunolocalization of pulmonary intravascular macrophages, TLR4, TLR9 and IL-8 in normal and Pasteurella multocida-infected lungs of water buffalo (Bubalus bubalis). J Comp Pathol 144:135–144

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Wan R, Shen Z, Gao J, Wang X, Qian L, Lu H, Han W, Wang X (2012a) Chemokine receptor CXCR3 is involved in the acute pancreatitis-associated lung injury. Biomed Pharmacother = Biomed Pharmacother 66:390–396

    Article  CAS  PubMed  Google Scholar 

  • Shen JQ, Shen J, Wang XP (2012b) Expression of insulin-like growth factor binding protein-4 (IGFBP-4) in acute pancreatitis induced by L-arginine in mice. Acta Histochem 114:379–385

    Article  CAS  PubMed  Google Scholar 

  • Shih WJ, Domstad PA, Friedman B, DeLand FH (1986) Intrathoracic abnormalities demonstrated by technetium-99m sulfur colloid imaging. Clin Nucl Med 11:792–796

    Article  CAS  PubMed  Google Scholar 

  • Simpson KW, Beechey-Newman N, Lamb CR, Smyth JB, Hughes G, Coombe K, Sumar N, Hermon-Taylor J (1995) Cholecystokinin-8 induces edematous pancreatitis in dogs associated with short burst of trypsinogen activation. Dig Dis Sci 40:2152–2161

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Atwal OS (1997) Ultrastructural and immunocytochemical study of the pulmonary intravascular macrophages of Escherichia coli lipopolysaccharide-treated sheep. Anat Rec 247:214–224

    Article  CAS  PubMed  Google Scholar 

  • Singh B, de la Concha-Bermejillo A (1998) Gadolinium chloride removes pulmonary intravascular macrophages and curtails the degree of ovine lentivirus-induced lymphoid interstitial pneumonia. Int J Exp Pathol 79:151–162

    CAS  PubMed  Google Scholar 

  • Singh Suri S, Janardhan KS, Parbhakar O, Caldwell S, Appleyard G, Singh B (2006) Expression of toll-like receptor 4 and 2 in horse lungs. Vet Res 37:541–551

    Article  PubMed  CAS  Google Scholar 

  • Singh B, Minhas KJ, Atwal OS (1994) Ultracytochemical study of multiple dose effect of monastral blue uptake by equine pulmonary intravascular macrophages (PIMs). J Submicrosc Cytol Pathol 26:235–243

    CAS  PubMed  Google Scholar 

  • Singh B, Doane KJ, Niehaus GD (1998) Ultrastructural and cytochemical evaluation of sepsis-induced changes in the rat pulmonary intravascular mononuclear phagocytes. J Anat 192(Pt 1):13–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh B, Pearce JW, Gamage LN, Janardhan K, Caldwell S (2004) Depletion of pulmonary intravascular macrophages inhibits acute lung inflammation. Am J Phys Lung Cell Mol Phys 286:L363–L372

    CAS  Google Scholar 

  • Smith JS, Tian J, Lozier JN, Byrnes AP (2004) Severe pulmonary pathology after intravenous administration of vectors in cirrhotic rats. Mol Ther 9:932–941

    Article  CAS  PubMed  Google Scholar 

  • Sone Y, Serikov VB, Staub NC Sr (1999) Intravascular macrophage depletion attenuates endotoxin lung injury in anesthetized sheep. J Appl Physiol 87:1354–1359

    Article  CAS  PubMed  Google Scholar 

  • Song R, Yu D, Park J (2016) Changes in gene expression of tumor necrosis factor alpha and interleukin 6 in a canine model of caerulein-induced pancreatitis. Can J Vet Res 80:236–241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Staub NC (1994) Pulmonary intravascular macrophages. Annu Rev Physiol 56:47–67

    Article  CAS  PubMed  Google Scholar 

  • Su KH, Cuthbertson C, Christophi C (2006) Review of experimental animal models of acute pancreatitis. HPB 8:264–286

    Article  PubMed  Google Scholar 

  • Suratt BT, Parsons PE (2006) Mechanisms of acute lung injury/acute respiratory distress syndrome. Clin Chest Med 27:579–589 abstract viii

    Article  PubMed  Google Scholar 

  • Tahamont MV, Barie PS, Blumenstock FA, Hussain MH, Malik AB (1982) Increased lung vascular permeability after pancreatitis and trypsin infusion. Am J Pathol 109:15–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takacs T, Rakonczay Z Jr, Varga IS, Ivanyi B, Mandi Y, Boros I, Lonovics J (2002) Comparative effects of water immersion pretreatment on three different acute pancreatitis models in rats. Biochem Cell Biol 80:241–251

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Mikami Y, Fukuyama S, Egawa S, Sunamura M, Ishibashi T, Sato A, Masamune A, Matsuno S (2005) Pancreatic ischemia associated with vasospasm in the early phase of human acute necrotizing pancreatitis. Pancreas 30:40–49

    Article  PubMed  Google Scholar 

  • Talamini G, Uomo G, Pezzilli R, Rabitti PG, Billi P, Bassi C, Cavallini G, Pederzoli P (1999) Serum creatinine and chest radiographs in the early assessment of acute pancreatitis. Am J Surg 177:7–14

    Article  CAS  PubMed  Google Scholar 

  • Thenappan T, Goel A, Marsboom G, Fang YH, Toth PT, Zhang HJ, Kajimoto H, Hong Z, Paul J, Wietholt C, Pogoriler J, Piao L, Rehman J, Archer SL (2011) A central role for CD68(+) macrophages in hepatopulmonary syndrome. Reversal by macrophage depletion. Am J Respir Crit Care Med 183:1080–1091

    Article  PubMed  Google Scholar 

  • Tsukahara Y, Morisaki T, Horita Y, Torisu M, Tanaka M (1999) Phospholipase A2 mediates nitric oxide production by alveolar macrophages and acute lung injury in pancreatitis. Ann Surg 229:385–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsushima K, King LS, Aggarwal NR, De Gorordo A, D'Alessio FR, Kubo K (2009) Acute lung injury review. Intern Med 48:621–630

    Article  PubMed  Google Scholar 

  • Ulmasov B, Oshima K, Rodriguez MG, Cox RD, Neuschwander-Tetri BA (2013) Differences in the degree of cerulein-induced chronic pancreatitis in C57BL/6 mouse substrains lead to new insights in identification of potential risk factors in the development of chronic pancreatitis. Am J Pathol 183:692–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrolyk V, Wobeser BK, Al-Dissi AN, Carr A, Singh B (2017) Lung inflammation associated with clinical acute necrotizing pancreatitis in dogs. Vet Pathol 54:129–140

    Article  CAS  PubMed  Google Scholar 

  • Vrolyk V, Schneberger D, Le K, Wobeser BK, Singh B (2019) Mouse model to study pulmonary intravascular macrophage recruitment and lung inflammation in acute necrotizing pancreatitis. Cell Tissue Res 378:97–111

    Article  CAS  PubMed  Google Scholar 

  • Warner AE, Brain JD (1990) The cell biology and pathogenic role of pulmonary intravascular macrophages. Am J Phys 258:L1–L12

    Article  CAS  Google Scholar 

  • Warner AE, Barry BE, Brain JD (1986) Pulmonary intravascular macrophages in sheep. Morphology and function of a novel constituent of the mononuclear phagocyte system. Lab Investig 55:276–288

    CAS  PubMed  Google Scholar 

  • Warner AE, Molina RM, Brain JD (1987) Uptake of bloodborne bacteria by pulmonary intravascular macrophages and consequent inflammatory responses in sheep. Am Rev Respir Dis 136:683–690

    Article  CAS  PubMed  Google Scholar 

  • Wartmann T, Mayerle J, Kahne T, Sahin-Toth M, Ruthenburger M, Matthias R, Kruse A, Reinheckel T, Peters C, Weiss FU, Sendler M, Lippert H, Schulz HU, Aghdassi A, Dummer A, Teller S, Halangk W, Lerch MM (2010) Cathepsin L inactivates human trypsinogen, whereas cathepsin L-deletion reduces the severity of pancreatitis in mice. Gastroenterology 138:726–737

    Article  CAS  PubMed  Google Scholar 

  • Watanabe O, Baccino FM, Steer ML, Meldolesi J (1984) Supramaximal caerulein stimulation and ultrastructure of rat pancreatic acinar cell: early morphological changes during development of experimental pancreatitis. Am J Phys 246:G457–G467

    CAS  Google Scholar 

  • Weaver C, Bishop AE, Polak JM (1994) Pancreatic changes elicited by chronic administration of excess L-arginine. Exp Mol Pathol 60:71–87

    Article  CAS  PubMed  Google Scholar 

  • Weibel ER, Palade GE (1964) New cytoplasmic components in arterial endothelia. J Cell Biol 23:101–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner J, Fernandez-del Castillo C, Rivera JA, Kollias N, Lewandrowski KB, Rattner DW, Warshaw AL (1998) On the protective mechanisms of nitric oxide in acute pancreatitis. Gut 43:401–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westphalen K, Gusarova GA, Islam MN, Subramanian M, Cohen TS, Prince AS, Bhattacharya J (2014) Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506:503–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler AP, Bernard GR (2007) Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet 369:1553–1564

    Article  PubMed  Google Scholar 

  • Whitcomb DC (2010) Genetic aspects of pancreatitis. Annu Rev Med 61:413–424

    Article  CAS  PubMed  Google Scholar 

  • Whitcomb DC, Lowe ME (2007) Human pancreatic digestive enzymes. Dig Dis Sci 52:1–17

    Article  CAS  PubMed  Google Scholar 

  • Winkler GC (1988) Pulmonary intravascular macrophages in domestic animal species: review of structural and functional properties. Am J Anat 181:217–234

    Article  CAS  PubMed  Google Scholar 

  • Winkler GC, Cheville NF (1987) Postnatal colonization of porcine lung capillaries by intravascular macrophages: an ultrastructural, morphometric analysis. Microvasc Res 33:224–232

    Article  CAS  PubMed  Google Scholar 

  • Xenoulis PG, Levinski MD, Suchodolski JS, Steiner JM (2011) Serum triglyceride concentrations in miniature schnauzers with and without a history of probable pancreatitis. J Vet Intern Med 25:20–25

    Article  CAS  PubMed  Google Scholar 

  • Yadav D, Lowenfels AB (2013) The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology 144:1252–1261

    Article  PubMed  Google Scholar 

  • Zhang L, Chen Y, Wang L, Chen XP, Zhang WG, Wang CY, Wu HS (2013) Chloroquine relieves acute lung injury in rats with acute hemorrhagic necrotizing pancreatitis. J Huazhong Univ Sci Technol Med Sci 33:357–360

    Article  CAS  Google Scholar 

Download references

Funding

The research cited in this article and conducted by the authors was supported by grant from Natural Sciences and Engineering Research Council of Canada. Dr. Vrolyk was a recipient of an Interprovincial Graduate Scholarship from Western College of Veterinary Medicine, University of Saskatchewan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baljit Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The research cited in this article conducted by the authors was approved by the Animal Ethics Board of University of Saskatchewan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This review is largely based on the material contained in the thesis submitted by Dr. Vanessa Vrolyk as part of her MSc degree to University of Saskatchewan (http://hdl.handle.net/10388/ETD-2014-05-1559

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vrolyk, V., Singh, B. Animal models to study the role of pulmonary intravascular macrophages in spontaneous and induced acute pancreatitis. Cell Tissue Res 380, 207–222 (2020). https://doi.org/10.1007/s00441-020-03211-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03211-y

Keywords

Navigation