Skip to main content

Advertisement

Log in

siRNA-mediated knockdown of sperm-associated antigen 11a (Spag11a) mRNA in epididymal primary epithelial cells affects proliferation: a transcriptome analyses

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Differential expression of a variety of proteins in the four major regions of the epididymis contributes to maturation of spermatozoa and region-specific cellular functions as well. Proliferation of epithelial cells of the epididymis is highly controlled and thus is one of the major reasons for the nonoccurrence of cancers in this organ system. The molecular mechanisms and the contribution of region-specific genes in epithelial cell proliferation are not yet fully understood. In this study, for the first time, we analyzed the role of sperm-associated antigen 11a (Spag11a), a caput-specific beta-defensin–like antimicrobial gene in governing epididymal cell proliferation and global gene expression. siRNA-mediated knockdown of Spag11a mRNA in epididymal primary epithelial cells resulted in increased cell proliferation. Out of the 68,842 genes analyzed, 4182 genes were differentially expressed (2154 upregulated and 2028 downregulated). A variety of genes that participate in different cellular processes and pathways were differentially regulated. Genes that are important for epithelial cell proliferation were found to be differentially regulated and these changes were confirmed by real-time PCR. Overexpression of Spag11a in immortalized rat caput epididymal cells resulted in decreased proliferation capacity. Results of this study indicate that Spag11a plays a crucial role in governing epididymal epithelial cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aitken RJ, Nixon B, Lin M, Koppers AJ, Lee YH, Baker MA (2007) Proteomic changes in mammalian spermatozoa during epididymal maturation. Asian J Androl 9:554–564

    CAS  PubMed  Google Scholar 

  • Belleannee C, Calvo E, Thimon V, Cyr DG, Legare C, Garneau L, Sullivan R (2012a) Role of microRNAs in controlling gene expression in different segments of the human epididymis. PLoS One 7:e34996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belleannee C, Thimon V, Sullivan R (2012b) Region-specific gene expression in the epididymis. Cell Tissue Res 349:717–731

    PubMed  Google Scholar 

  • Bischof JM, Gillen AE, Song L, Gosalia N, London D, Furey TS, Crawford GE, Harris A (2013) A genome-wide analysis of open chromatin in human epididymis epithelial cells reveals candidate regulatory elements for genes coordinating epididymal function. Biol Reprod 89:104

    PubMed  PubMed Central  Google Scholar 

  • Bjorkgren I, Alvarez L, Blank N, Balbach M, Turunen H, Laajala TD, Toivanen J, Krutskikh A, Wahlberg N, Huhtaniemi I, Poutanen M, Wachten D, Sipila P (2016) Targeted inactivation of the mouse epididymal beta-defensin 41 alters sperm flagellar beat pattern and zona pellucida binding. Mol Cell Endocrinol 427:143–154

    CAS  PubMed  Google Scholar 

  • Browne JA, Yang R, Song L, Crawford GE, Leir SH, Harris A (2014) Open chromatin mapping identifies transcriptional networks regulating human epididymis epithelial function. Mol Hum Reprod 20:1198–1207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Browne JA, Yang R, Eggener SE, Leir SH, Harris A (2016a) HNF1 regulates critical processes in the human epididymis epithelium. Mol Cell Endocrinol 425:94–102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Browne JA, Yang R, Leir SH, Eggener SE, Harris A (2016b) Expression profiles of human epididymis epithelial cells reveal the functional diversity of caput, corpus and cauda regions. Mol Hum Reprod 22:69–82

    CAS  PubMed  Google Scholar 

  • Bullard RS, Gibson W, Bose SK, Belgrave JK, Eaddy AC, Wright CJ, Hazen-Martin DJ, Lage JM, Keane TE, Ganz TA, Donald CD (2008) Functional analysis of the host defense peptide Human Beta Defensin-1: new insight into its potential role in cancer. Mol Immunol 45:839–848

    CAS  PubMed  Google Scholar 

  • Carvajal G, Brukman NG, Weigel Munoz M, Battistone MA, Guazzone VA, Ikawa M, Haruhiko M, Lustig L, Breton S, Cuasnicu PS (2018) Impaired male fertility and abnormal epididymal epithelium differentiation in mice lacking CRISP1 and CRISP4. Sci Rep 8:17531

    PubMed  PubMed Central  Google Scholar 

  • Chen YC, Bunick D, Bahr JM, Klinefelter GR, Hess RA (1998) Isolation and culture of epithelial cells from rat ductuli efferentes and initial segment epididymidis. Tissue Cell 30:1–13

    CAS  PubMed  Google Scholar 

  • Chen P, Yang Q, Li X, Qin Y (2017) Potential association between elevated serum human epididymis protein 4 and renal fibrosis: a systemic review and meta-analysis. Medicine (Baltimore) 96:e7824

    CAS  PubMed Central  Google Scholar 

  • Chu C, Zheng G, Hu S, Zhang J, Xie S, Ma W, Ni M, Tang C, Zhou L, Zhou Y, Liu M, Li Y, Zhang Y (2015) Epididymal region-specific miRNA expression and DNA methylation and their roles in controlling gene expression in rats. PLoS One 10:e0124450

    PubMed  PubMed Central  Google Scholar 

  • Dacheux JL, Belleannee C, Jones R, Labas V, Belghazi M, Guyonnet B, Druart X, Gatti JL, Dacheux F (2009) Mammalian epididymal proteome. Mol Cell Endocrinol 306:45–50

    CAS  PubMed  Google Scholar 

  • Droin N, Hendra JB, Ducoroy P, Solary E (2009) Human defensins as cancer biomarkers and antitumour molecules. J Proteomics 72:918–927

    CAS  PubMed  Google Scholar 

  • Ferraro S, Panteghini M (2018) Making new biomarkers a reality: the case of serum human epididymis protein 4. Clin Chem Lab Med

  • Frohlich O, Po C, Murphy T, Young LG (2000) Multiple promoter and splicing mRNA variants of the epididymis-specific gene EP2. J Androl 21:421–430

    CAS  PubMed  Google Scholar 

  • Gao C, Yue W, Tian H, Lin L, Li S, Si L (2016) Human beta-defensin 2 promotes the proliferation of lung cancer cells through ATP-binding cassette transporter G2. Int J Clin Exp Pathol 9:5944–5949

    CAS  Google Scholar 

  • Han Q, Wang R, Sun C, Jin X, Liu D, Zhao X, Wang L, Ji N, Li J, Zhou Y, Ye L, Liang X, Jiang L, Liao G, Dan H, Zeng X, Chen Q (2014) Human beta-defensin-1 suppresses tumor migration and invasion and is an independent predictor for survival of oral squamous cell carcinoma patients. PLoS One 9:e91867

    PubMed  PubMed Central  Google Scholar 

  • Hanaoka Y, Yamaguchi Y, Yamamoto H, Ishii M, Nagase T, Kurihara H, Akishita M, Ouchi Y (2016) In vitro and in vivo anticancer activity of human beta-defensin-3 and its mouse homolog. Anticancer Res 36:5999–6004

    CAS  PubMed  Google Scholar 

  • Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    PubMed  Google Scholar 

  • Johnston DS, Jelinsky SA, Bang HJ, DiCandeloro P, Wilson E, Kopf GS, Turner TT (2005) The mouse epididymal transcriptome: transcriptional profiling of segmental gene expression in the epididymis. Biol Reprod 73:404–413

    CAS  PubMed  Google Scholar 

  • Juma AR, Grommen SVH, O’Bryan MK, O’Connor AE, Merriner DJ, Hall NE, Doyle SR, Damdimopoulou PE, Barriga D, Hart AH, Van de Ven WJM, De Groef B (2017) PLAG1 deficiency impairs spermatogenesis and sperm motility in mice. Sci Rep 7:5317

    PubMed  PubMed Central  Google Scholar 

  • Kierszenbaum AL, Lea O, Petrusz P, French FS, Tres LL (1981) Isolation, culture, and immunocytochemical characterization of epididymal epithelial cells from pubertal and adult rats. Proc Natl Acad Sci U S A 78:1675–1679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krutskikh A, De Gendt K, Sharp V, Verhoeven G, Poutanen M, Huhtaniemi I (2011) Targeted inactivation of the androgen receptor gene in murine proximal epididymis causes epithelial hypotrophy and obstructive azoospermia. Endocrinology 152:689–696

    CAS  PubMed  Google Scholar 

  • Li P, Chan HC, He B, So SC, Chung YW, Shang Q, Zhang YD, Zhang YL (2001) An antimicrobial peptide gene found in the male reproductive system of rats. Science 291:1783–1785

    CAS  PubMed  Google Scholar 

  • Li Y, Wang HY, Wan FC, Liu FJ, Liu J, Zhang N, Jin SH, Li JY (2012) Deep sequencing analysis of small non-coding RNAs reveals the diversity of microRNAs and piRNAs in the human epididymis. Gene 497:330–335

    CAS  PubMed  Google Scholar 

  • Li J, Wang X, Qu W, Wang J, Jiang SW (2019) Comparison of serum human epididymis protein 4 and CA125 on endometrial cancer detection: a meta-analysis. Clin Chim Acta 488:215–220

    CAS  PubMed  Google Scholar 

  • Ma W, Xie S, Ni M, Huang X, Hu S, Liu Q, Liu A, Zhang J, Zhang Y (2012) MicroRNA-29a inhibited epididymal epithelial cell proliferation by targeting nuclear autoantigenic sperm protein (NASP). J Biol Chem 287:10189–10199

    CAS  PubMed  Google Scholar 

  • Meng X, Yang S, Zhang Y, Wang X, Goodfellow RX, Jia Y, Thiel KW, Reyes HD, Yang B, Leslie KK (2015) Genetic deficiency of Mtdh gene in mice causes male infertility via impaired spermatogenesis and alterations in the expression of small non-coding RNAs. J Biol Chem 290:11853–11864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mi D, Zhang Y (2018) Diagnostic and prognostic value of HE4 in female patients with primary peritoneal carcinoma. Int J Biol Markers 1724600818796595

  • Mo D, He F (2018) Serum human epididymis secretory protein 4 (HE4) is a potential prognostic biomarker in non-small cell lung cancer. Clin Lab 64:1421–1428

    CAS  PubMed  Google Scholar 

  • Nixon B, Stanger SJ, Mihalas BP, Reilly JN, Anderson AL, Dun MD, Tyagi S, Holt JE, McLaughlin EA (2015) Next generation sequencing analysis reveals segmental patterns of microRNA expression in mouse epididymal epithelial cells. PLoS One 10:e0135605

    PubMed  PubMed Central  Google Scholar 

  • Osterhoff C, Kirchhoff C, Krull N, Ivell R (1994) Molecular cloning and characterization of a novel human sperm antigen (HE2) specifically expressed in the proximal epididymis. Biol Reprod 50:516–525

    CAS  PubMed  Google Scholar 

  • Ribeiro CM, Silva EJ, Hinton BT, Avellar MC (2016) Beta-defensins and the epididymis: contrasting influences of prenatal, postnatal, and adult scenarios. Asian J Androl 18:323–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez CM, Kirby JL, Hinton BT (2001) From molecules to clinical practice. In: Robaire B, Hinton BT (eds) The epididymis. Kluwer Academic/Plenum Publishers, New York

  • Sangeeta K, Yenugu S (2019) Characterization of isolated rat caput epididymal primary epithelial cells: a molecular biology approach. Theriogenology 135:13–18

    CAS  PubMed  Google Scholar 

  • Sipila P, Bjorkgren I (2016) Segment-specific regulation of epididymal gene expression. Reproduction 152:R91–R99

    CAS  PubMed  Google Scholar 

  • Uraki S, Sugimoto K, Shiraki K, Tameda M, Inagaki Y, Ogura S, Kasai C, Nojiri K, Yoneda M, Yamamoto N, Takei Y, Nobori T, Ito M (2014) Human beta-defensin-3 inhibits migration of colon cancer cells via downregulation of metastasis-associated 1 family, member 2 expression. Int J Oncol 45:1059–1064

    CAS  PubMed  Google Scholar 

  • Wang L, Yuan Q, Chen S, Cai H, Lu M, Liu Y, Xu C (2012) Antimicrobial activity and molecular mechanism of the CRES protein. PLoS One 7:e48368

    CAS  PubMed  PubMed Central  Google Scholar 

  • White MG, Huang YS, Tres LL, Kierszenbaum AL (1982) Structural and functional aspects of cultured epididymal epithelial cells isolated from pubertal rats. J Reprod Fertil 66:475–484

    CAS  PubMed  Google Scholar 

  • Xu B, Yang L, Lye RJ, Hinton BT (2010) p-MAPK1/3 and DUSP6 regulate epididymal cell proliferation and survival in a region-specific manner in mice. Biol Reprod 83:807–817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Zhang B, Liao C, Zhang W, Wang W, Chang Y, Shao Y (2016) Human beta-defensin 3 contributes to the carcinogenesis of cervical cancer via activation of NF-kappaB signaling. Oncotarget 7:75902–75913

    PubMed  PubMed Central  Google Scholar 

  • Yang R, Browne JA, Eggener SE, Leir SH, Harris A (2018) A novel transcriptional network for the androgen receptor in human epididymis epithelial cells. Mol Hum Reprod 24:433–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yenugu S, Hamil KG, French FS, Hall SH (2004) Antimicrobial actions of the human epididymis 2 (HE2) protein isoforms, HE2alpha, HE2beta1 and HE2beta2. Reprod Biol Endocrinol 2:61

    PubMed  PubMed Central  Google Scholar 

  • Yenugu S, Hamil KG, Grossman G, Petrusz P, French FS, Hall SH (2006) Identification, cloning and functional characterization of novel Spag11 isoforms in the rat. Reprod Biol Endocrinol 4:1–14

    Google Scholar 

  • Yeung CH, Wang K, Cooper TG (2012) Why are epididymal tumours so rare? Asian J Androl 14:465–475

    PubMed  PubMed Central  Google Scholar 

  • Yuan T, Li Y (2017) Human epididymis protein 4 as a potential biomarker of chronic kidney disease in female patients with normal ovarian function. Lab Med 48:238–243

    PubMed  Google Scholar 

  • Zhang C, Zhou Y, Xie S, Yin Q, Tang C, Ni Z, Fei J, Zhang Y (2018) CRISPR/Cas9-mediated genome editing reveals the synergistic effects of beta-defensin family members on sperm maturation in rat epididymis. FASEB J 32:1354–1363

    CAS  PubMed  Google Scholar 

  • Zhu L, Guo Q, Jin S, Feng H, Zhuang H, Liu C, Tan M, Liu J, Li X, Lin B (2016a) Analysis of the gene expression profile in response to human epididymis protein 4 in epithelial ovarian cancer cells. Oncol Rep 36:1592–1604

    CAS  PubMed  Google Scholar 

  • Zhu L, Zhuang H, Wang H, Tan M, Schwab CL, Deng L, Gao J, Hao Y, Li X, Gao S, Liu J, Lin B (2016b) Overexpression of HE4 (human epididymis protein 4) enhances proliferation, invasion and metastasis of ovarian cancer. Oncotarget 7:729–744

    PubMed  Google Scholar 

  • Zhuravel OV, Gerashchenko OL, Khetsuriani MR, Soldatkina MA, Pogrebnoy PV (2014) Expression of human beta-defensins-1-4 in thyroid cancer cells and new insight on biologic activity of hBD-2 in vitro. Exp Oncol 36:174–178

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the facilities extended by UGC-SAP, UGC-CAS, DBT-CREBB, DST-PURSE, UGC-UPE-II, and FIST programs at School of Life Sciences, University of Hyderabad. Kumari Sangeeta received the RGNF junior research fellowship from Government of India.

Funding

The study was funded by a research grant (EMR/2016/000791) of the Science and Engineering Research Board, Government of India is acknowledged. KS received a RGNF research fellowship from Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Yenugu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal ethics approval

All procedures involving animals were conducted using the guidelines for the care and use of laboratory animals to minimize suffering, and this study was specifically approved by the Institutional Animal Ethics Committee of University of Hyderabad (IAEC/UH/2017/01/SY/P13).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 22 kb)

ESM 2

(XLSX 409 kb)

ESM 3

(DOCX 28 kb)

ESM 4

(XLSX 17 kb)

ESM 5

(XLSX 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangeeta, K., Yenugu, S. siRNA-mediated knockdown of sperm-associated antigen 11a (Spag11a) mRNA in epididymal primary epithelial cells affects proliferation: a transcriptome analyses. Cell Tissue Res 379, 601–612 (2020). https://doi.org/10.1007/s00441-019-03107-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03107-6

Keywords

Navigation