Skip to main content

Advertisement

Log in

The effect of sodium valproate on differentiation of human adipose-derived stem cells into cardiomyocyte-like cells in two-dimensional culture and fibrin scaffold conditions

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Differentiation of mesenchymal stem cells (MSCs) into cardiomyocytes is a complex phenomenon, and attempts to find an effective inducing agent are still ongoing. We studied the effect of fibrin scaffold and sodium valproate (VPA, as a histone deacetylase inhibitor) on the differentiation of human adipose-derived stem cells (hADSCs) into cardiomyocyte-like cells. The cells were cultured in culture flask (2D) and in fibrin scaffold (3D), fabricated of human plasma fibrinogen, with and without VPA (1 mM). QRT-PCR, Western blot, and immunochemistry assays were used to evaluate the expression of cardiac markers at gene and protein levels. High levels of CD44, CD90, CD73, and CD105 were expressed on the surface of hADSCs. Treated encapsulated hADSCs (3D) presented significantly higher mRNA expression of HAND1 (1.54-fold), HAND2 (1.59-fold), cTnI (1.76-fold), MLC2v (1.4-fold), Cx43 (1.38-fold), βMHC (1.34-fold), GATA4 (1.48-fold), and NKX2.5 (1.66-fold) in comparison to 2D conditions at four weeks after induction. The protein expressions of NKX2.5 (0.78 vs 0.65), cTnI (1.04 vs 0.81), and Cx43 (1.11 vs 1.08) were observed in the differentiated cells both in 3D and 2D groups, while control cells were absolutely negative for these proteins. The frequency of cTnI and Cx43-positive cells was significantly higher in 3D (24.2 ± 15 and 12 ± 3%) than 2D conditions (19.8 ± 3 and 10 ± 2%). Overall, the results showed that VPA can increase cardiomyogenesis in hADSCs and that fibrin scaffold enhances the inductive effect of VPA. Results of this study may improve cell-based protocols for implementation of more successful cardiac repair strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akavia UD, Veinblat O, Benayahu D (2008) Comparing the transcriptional profile of mesenchymal cells to cardiac and skeletal muscle cells. J Cell Physiol 216:663–672

    Article  CAS  PubMed  Google Scholar 

  • Bacakova L, Zarubova J, Travnickova M, Musilkova J, Pajorova J, Slepicka P, Kasalkova NS, Svorcik V, Kolska Z, Motarjemi H (2018) Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells—a review. Biotechnol Adv

  • Bagheri-Hosseinabadi Z, Salehinejad P, Mesbah-Namin SA (2017) Differentiation of human adipose-derived stem cells into cardiomyocyte-like cells in fibrin scaffold by a histone deacetylase inhibitor. Biomed Eng Online 16:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Bagheri-Hosseinabadi Z, Mesbah-Namin SA, Salehinejad P, Seyedi F (2018) Fibrin scaffold could promote survival of the human adipose-derived stem cells during differentiation into cardiomyocyte-like cells. Cell Tissue Res 372:571–589

    Article  CAS  PubMed  Google Scholar 

  • Barsotti MC, Felice F, Balbarini A, Di Stefano R (2011) Fibrin as a scaffold for cardiac tissue engineering. Biotechnol Appl Biochem 58:301–310

    Article  CAS  PubMed  Google Scholar 

  • Brookes RL, Crichton S, Wolfe CD, Yi Q, Li L, Hankey GJ, Rothwell PM, Markus HS (2018) Sodium valproate, a histone deacetylase inhibitor, is associated with reduced stroke risk after previous ischemic stroke or transient ischemic attack. Stroke 49:54–61

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Yue A, Ruan Z, Yin Y, Wang R, Ren Y, Zhu L (2015) Potential of 5-azacytidine induction decidual stromal cells from maternal human term placenta towards cardiomyocyte-like cells in serum-free medium. Cell Tissue Bank 16:477–485

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y-C, Lin H, Huang M-J, Chow J-M, Lin S, Liu HE (2007) Downregulation of c-Myc is critical for valproic acid-induced growth arrest and myeloid differentiation of acute myeloid leukemia. Leuk Res 31:1403–1411

    Article  CAS  PubMed  Google Scholar 

  • Cho J, Rameshwar P, Sadoshima J (2009) Distinct roles of GSK-3α and GSK-3β in mediating cardiomyocyte differentiation in murine bone marrow derived mesenchymal stem cells. J Biol Chem 284(52):36647–36658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YS, Dusting GJ, Stubbs S, Arunothayaraj S, Han XL, Collas P, Morrison WA, Dilley RJ (2010) Differentiation of human adipose-derived stem cells into beating cardiomyocytes. J Cell Mol Med 14:878–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Sarno P, Li X, Jope RS (2002) Regulation of Akt and glycogen synthase kinase-3β phosphorylation by sodium valproate and lithium. Neuropharmacology 43:1158–1164

    Article  PubMed  Google Scholar 

  • Gaustad KG, Boquest AC, Anderson BE, Gerdes AM, Collas P (2004) Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochem Biophys Res Commun 314:420–427

    Article  CAS  PubMed  Google Scholar 

  • Girão-Silva T, Bassaneze V, Campos LCG, Barauna VG, Dallan LAO, Krieger JE, Miyakawa AA (2014) Short-term mechanical stretch fails to differentiate human adipose-derived stem cells into cardiovascular cell phenotypes. Biomed Eng Online 13:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzales E, Chen H, Munuve R, Mehrani T, Britten-Webb J, Nadel A, Alam HB, Wherry D, Burris D, Koustova E (2006) Valproic acid prevents hemorrhage-associated lethality and affects the acetylation pattern of cardiac histones. Shock 25:395–401

    Article  CAS  PubMed  Google Scholar 

  • Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman JP, Coco FL, Nervi C, Pelicci PG (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–6978

    Article  PubMed  PubMed Central  Google Scholar 

  • Grabarska A, Dmoszyńska-Graniczka M, Jeleniewicz W, Kiełbus M, Nowosadzka E, Rivero-Muller A, Polberg K, Stepulak A (2014) Valproic acid suppresses growth and enhances cisplatin cytotoxicity to larynx cancer cells. Head Neck Oncol 6:7

    Google Scholar 

  • Grayson WL, Chao P-HG, Marolt D, Kaplan DL, Vunjak-Novakovic G (2008) Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol 26:181–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurvich N, Tsygankova OM, Meinkoth JL, Klein PS (2004) Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res 64:1079–1086

    Article  CAS  PubMed  Google Scholar 

  • Hosseinkhani M, Hasegawa K, Ono K, Kawamura T, Takaya T, Morimoto T, Wada H, Shimatsu A, Prat SG, Suemori H (2007) Trichostatin A induces myocardial differentiation of monkey ES cells. Biochem Biophys Res Commun 356:386–391

    Article  CAS  PubMed  Google Scholar 

  • Karamboulas C, Swedani A, Ward C, Al-Madhoun AS, Wilton S, Boisvenue S, Ridgeway AG, Skerjanc IS (2006) HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage. J Cell Sci 119:4305–4314

    Article  CAS  PubMed  Google Scholar 

  • Kwiecińska P, Taubøll E, Gregoraszczuk EŁ (2012) Effects of valproic acid and levetiracetam on viability and cell cycle regulatory genes expression in the OVCAR-3 cell line. Pharmacol Rep 64:157–165

    Article  PubMed  Google Scholar 

  • Latifpour M, Nematollahi-Mahani SN, Deilamy M, Azimzadeh BS, Eftekhar-Vaghefi SH, Nabipour F, Najafipour H, Nakhaee N, Yaghoubi M, Eftekhar-Vaghefi R (2011) Improvement in cardiac function following transplantation of human umbilical cord matrix-derived mesenchymal cells. Cardiology 120:9–18

    Article  PubMed  Google Scholar 

  • Lemcke H, Voronina N, Steinhoff G, David R (2018) Recent progress in stem cell modification for cardiac regeneration. Stem Cells Int 2018

  • Li X, Yu X, Lin Q, Deng C, Shan Z, Yang M, Lin S (2007) Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment. J Mol Cell Cardiol 42:295–303

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Qi L-J, Guo Z-K, Li H, Zuo H-B, Li N-N (2013) CD73+ adipose-derived mesenchymal stem cells possess higher potential to differentiate into cardiomyocytes in vitro. J Mol Histol 44:411–422

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Foote M, Chen J (2014) Effects of histone deacetylase inhibitor valproic acid on skeletal myocyte development. Sci Rep 4:7207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SY, Sivakumaran P, Crombie DE, Dusting GJ, Pébay A, Dilley RJ (2013) Trichostatin A enhances differentiation of human induced pluripotent stem cells to cardiogenic cells for cardiac tissue engineering. Stem Cells Transl Med 2:715–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Li HY, Chen LF, Liu BJ, Yao Y, Zhu WL (2013) Enhanced differentiation potential of human amniotic mesenchymal stromal cells by using three-dimensional culturing. Cell Tissue Res 352:523–535

    Article  CAS  PubMed  Google Scholar 

  • Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng B Rev 19:485–502

    Article  CAS  Google Scholar 

  • Marks P, Xu WS (2009) Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem 107:600–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després J-P, Fullerton HJ, Howard VJ (2015) American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131:e29–e322

    Google Scholar 

  • Otsuki Y, Ii M, Moriwaki K, Okada M, Ueda K, Asahi M (2018) W9 peptide enhanced osteogenic differentiation of human adipose-derived stem cells. Biochem Biophys Res Commun 495:904–910

    Article  CAS  PubMed  Google Scholar 

  • Oyama T, Nagai T, Wada H, Naito AT, Matsuura K, Iwanaga K, Takahashi T, Goto M, Mikami Y, Yasuda N (2007) Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol 176:329–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Planat-Benard V, Silvestre J-S, Cousin B, André M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109:656–663

    Article  PubMed  Google Scholar 

  • Rangappa S, Fen C, Lee EH, Bongso A, Wei ESK (2003) Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg 75:775–779

    Article  PubMed  Google Scholar 

  • Raut A, Khanna A (2016) Enhanced expression of hepatocyte-specific microRNAs in valproic acid mediated hepatic trans-differentiation of human umbilical cord derived mesenchymal stem cells. Exp Cell Res 343:237–247

    Article  CAS  PubMed  Google Scholar 

  • Rice K, Hormaeche I, Licht J (2007) Epigenetic regulation of normal and malignant hematopoiesis. Oncogene 26:6697

    Article  CAS  PubMed  Google Scholar 

  • Shachar M, Tsur-Gang O, Dvir T, Leor J, Cohen S (2011) The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater 7:152–162

    Article  CAS  PubMed  Google Scholar 

  • Sukho P, Cohen A, Hesselink JW, Kirpensteijn J, Verseijden F, Bastiaansen-Jenniskens YM (2018) Adipose tissue-derived stem cell sheet application for tissue healing in vivo: a systematic review. Tissue Eng B Rev 24:37–52

    Article  Google Scholar 

  • Tobita M, Orbay H, Mizuno H (2011) Adipose-derived stem cells: current findings and future perspectives. Discov Med 11:160–170

    PubMed  Google Scholar 

  • Varghese J, Griffin M, Mosahebi A, Butler P (2017) Systematic review of patient factors affecting adipose stem cell viability and function: implications for regenerative therapy. Stem Cell Res Ther 8:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vrba J, Dolezel P, Ulrichova J (2010) Neutrophilic differentiation modulates the apoptotic response of HL-60 cells to sodium butyrate and sodium valproate. Neoplasma 57:438

    Article  CAS  PubMed  Google Scholar 

  • Vrba J, Trtkova K, Ulrichova J (2011) HDAC inhibitors sodium butyrate and sodium valproate do not affect human ncor1 and ncor2 gene expression in HL-60 cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 155:259–262

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Zhang X, Qian H, Zhu W, Sun X, Hu J, Zhou H, Chen Y (2004) Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med 229:623–631

    Article  CAS  Google Scholar 

  • Yang G, Tian J, Feng C, L-L Z, Liu Z, Zhu J (2012) Trichostatin a promotes cardiomyocyte differentiation of rat mesenchymal stem cells after 5-azacytidine induction or during coculture with neonatal cardiomyocytes via a mechanism independent of histone deacetylase inhibition. Cell Transplant 21:985–996

    Article  PubMed  Google Scholar 

  • Yang J-J, Z-Q L, J-M Z, Wang H-B, Hu S-Y, J-F L, Wang C-Y (2013) Real-time tracking of adipose tissue-derived stem cells with injectable scaffolds in the infarcted heart. Heart Vessel 28:385–396

    Article  Google Scholar 

  • Yu IT, Park J-Y, Kim SH, Lee J-S, Kim Y-S, Son H (2009) Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation. Neuropharmacology 56:473–480

    Article  CAS  PubMed  Google Scholar 

  • Zeng R, Y-C C, Zeng Z, W-Q L, X-F J, Liu R, Qiang O, Li X (2011) Effect of mini-tyrosyl-tRNA synthetase/mini-tryptophanyl-tRNA synthetase on ischemic angiogenesis in rats: proliferation and migration of endothelial cells. Heart Vessel 26:69–80

    Article  Google Scholar 

  • Zhang F-B, Li L, Fang B, Zhu D-L, Yang H-T, Gao P-J (2005) Passage-restricted differentiation potential of mesenchymal stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun 336:784–792

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was granted by the Physiology Research Center of Kerman University of Medical Sciences (Grant No KMU-1395/476). The authors are grateful for the help of Amirkabir University, Tehran, for electron microscopy of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Bagheri-Hosseinabadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafipour, H., Bagheri-Hosseinabadi, Z., Eslaminejad, T. et al. The effect of sodium valproate on differentiation of human adipose-derived stem cells into cardiomyocyte-like cells in two-dimensional culture and fibrin scaffold conditions. Cell Tissue Res 378, 127–141 (2019). https://doi.org/10.1007/s00441-019-03027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03027-5

Keywords

Navigation