Skip to main content
Log in

Connexin 43 and ATP-sensitive potassium channels crosstalk: a missing link in hypoxia/ischemia stress

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Connexin 43 (Cx43) is a gap junction protein expressed in various tissues and organs of vertebrates. Besides functioning as a gap junction, Cx43 also regulates diverse cellular processes like cell growth and differentiation, cell migration, cell survival, etc. Cx43 is critical for normal cardiac functioning and is therefore abundantly expressed in cardiomyocytes. On the other hand, ATP-sensitive potassium (KATP) channels are metabolic sensors converting metabolic changes into electrical activity. These channels are important in maintaining the neurotransmitter release, smooth muscle relaxation, cardiac action potential repolarization, normal physiology of cellular repolarization, insulin secretion and immune function. Cx43 and KATP channels are part of the same signaling pathway, regulating cell survival during stress conditions and ischemia/hypoxia preconditioning. However, the underlying molecular mechanism for their combined role in ischemia/hypoxia preconditioning is largely unknown. The current review focuses on understanding the molecular mechanism responsible for the coordinated role of Cx43 and KATP channel protein in protecting cardiomyocytes against ischemia/hypoxia stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Cx43:

Connexin43

HP:

Hypoxia preconditioning

IP:

Ischemic preconditioning

KATP :

ATP-sensitive potassium channels

MAPK:

Mitogen-activated protein kinases

NO:

Nitric oxide.

PKC:

Protein kinase C.

SUR:

Sulfonylurea receptor.

References

  • Ahmad Waza A, Andrabi K, Ul Hussain M (2012) Adenosine-triphosphate-sensitive K+ channel (Kir6.1): a novel phosphospecific interaction partner of connexin 43 (Cx43). Exp Cell Res 318:2559–2566

    Article  CAS  PubMed  Google Scholar 

  • Ak G, Tada Y, Shimada H, Metintas S, Ito M, Hiroshima K, Tagawa M, Metintas M (2017) Midkine is a potential novel marker for malignant mesothelioma with different prognostic and diagnostic values from mesothelin. BMC Cancer 17:212

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen A (1992) The cardiotoxicity of chemotherapeutic drugs. Semin Oncol 19:529–542

    CAS  PubMed  Google Scholar 

  • Araya R, Eckardt D, Maxeiner S, Kruger O, Theis M, Willecke K, Saez JC (2005) Expression of connexins during differentiation and regeneration of skeletal muscle: functional relevance of connexin43. J Cell Sci 118:27–37

    Article  CAS  PubMed  Google Scholar 

  • Ashcroft SJ, Ashcroft FM (1990) Properties and functions of ATP-sensitive K-channels. Cell Signal 2:197–214

    Article  CAS  PubMed  Google Scholar 

  • Baines CP, Goto M, Downey JM (1997) Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol 29:207–216

    Article  CAS  PubMed  Google Scholar 

  • Beardslee MA, Lerner DL, Tadros PN, Laing JG, Beyer EC, Yamada KA, Kleber AG, Schuessler RB, Saffitz JE (2000) Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 87:656–662

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar A, Srivastava SK, Szabo G (1990) Oxidative stress alters specific membrane currents in isolated cardiac myocytes. Circ Res 67:535–549

    Article  CAS  PubMed  Google Scholar 

  • Bivi N, Condon KW, Allen MR, Farlow N, Passeri G, Brun LR, Rhee Y, Bellido T, Plotkin LI (2012) Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation. J Bone Miner Res 27:374–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boengler K, Konietzka I, Buechert A, Heinen Y, Garcia-Dorado D, Heusch G, Schulz R (2007) Loss of ischemic preconditioning's cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. Am J Phys Heart Circ Phys 292:H1764–H1769

    CAS  Google Scholar 

  • Boengler K, Schulz R, Heusch G (2006) Connexin 43 signalling and cardioprotection. Heart 92:1724–1727

    Article  CAS  PubMed  Google Scholar 

  • Boengler K, Stahlhofen S, van de Sand A, Gres P, Ruiz-Meana M, Garcia-Dorado D, Heusch G, Schulz R (2009) Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria. Basic Res Cardiol 104:141–147

    Article  CAS  PubMed  Google Scholar 

  • Bolli R (2000) The late phase of preconditioning. Circ Res 87:972–983

    Article  CAS  PubMed  Google Scholar 

  • Camerlinck M, Vanhoenacker F, De Vuyst D, Quanten I (2011) Appendicitis in an obturator hernia. Abdom Imaging 36:170–173

    Article  PubMed  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    Article  CAS  PubMed  Google Scholar 

  • Chaytor AT, Martin PE, Edwards DH, Griffith TM (2001) Gap junctional communication underpins EDHF-type relaxations evoked by ACh in the rat hepatic artery. Am J Phys Heart Circ Phys 280:H2441–H2450

    CAS  Google Scholar 

  • Chen BP, Mao HJ, Fan FY, Bruce IC, Xia Q (2005) Delayed uncoupling contributes to the protective effect of heptanol against ischaemia in the rat isolated heart. Clin Exp Pharmacol Physiol 32:655–662

    Article  PubMed  Google Scholar 

  • Cleveland JC Jr, Meldrum DR, Rowland RT, Banerjee A, Harken AH (1997) Adenosine preconditioning of human myocardium is dependent upon the ATP-sensitive K+ channel. J Mol Cell Cardiol 29:175–182

    Article  CAS  PubMed  Google Scholar 

  • Cohen MV, Baines CP, Downey JM (2000) Ischemic preconditioning: from adenosine receptor to KATP channel. Annu Rev Physiol 62:79–109

    Article  CAS  PubMed  Google Scholar 

  • Couvreur N, Lucats L, Tissier R, Bize A, Berdeaux A, Ghaleh B (2006) Differential effects of postconditioning on myocardial stunning and infarction: a study in conscious dogs and anesthetized rabbits. Am J Phys Heart Circ Phys 291:H1345–H1350

    CAS  Google Scholar 

  • Das DK, Maulik N, Sato M, Ray PS (1999) Reactive oxygen species function as second messenger during ischemic preconditioning of heart. Mol Cell Biochem 196:59–67

    Article  CAS  PubMed  Google Scholar 

  • De Vuyst E, Boengler K, Antoons G, Sipido KR, Schulz R, Leybaert L (2011) Pharmacological modulation of connexin-formed channels in cardiac pathophysiology. Br J Pharmacol 163:469–483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doble BW, Dang X, Ping P, Fandrich RR, Nickel BE, Jin Y, Cattini PA, Kardami E (2004) Phosphorylation of serine 262 in the gap junction protein connexin-43 regulates DNA synthesis in cell-cell contact forming cardiomyocytes. J Cell Sci 117:507–514

    Article  CAS  PubMed  Google Scholar 

  • Doble BW, Ping P, Kardami E (2000) The epsilon subtype of protein kinase C is required for cardiomyocyte connexin-43 phosphorylation. Circ Res 86:293–301

    Article  CAS  PubMed  Google Scholar 

  • Downey JM, Cohen MV (2000) Do mitochondrial K(ATP) channels serve as triggers rather than end-effectors of ischemic preconditioning's protection? Basic Res Cardiol 95:272–274

    Article  CAS  PubMed  Google Scholar 

  • Easton JA, Petersen JS, Martin PE (2009) The anti-arrhythmic peptide AAP10 remodels Cx43 and Cx40 expression and function. Naunyn Schmiedeberg's Arch Pharmacol 380:11–24

    Article  CAS  Google Scholar 

  • Elbadawy HM, Mirabelli P, Xeroudaki M, Parekh M, Bertolin M, Breda C, Cagini C, Ponzin D, Lagali N, Ferrari S (2016) Effect of connexin 43 inhibition by the mimetic peptide Gap27 on corneal wound healing, inflammation and neovascularization. Br J Pharmacol 173:2880–2893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari R (1996) The role of mitochondria in ischemic heart disease. J Cardiovasc Pharmacol 28(Suppl 1):S1–10

    CAS  PubMed  Google Scholar 

  • Fontes MS, van Veen TA, de Bakker JM, van Rijen HV (2012) Functional consequences of abnormal Cx43 expression in the heart. Biochim Biophys Acta 1818:2020–2029

    Article  CAS  PubMed  Google Scholar 

  • Forbes RA, Steenbergen C, Murphy E (2001) Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res 88:802–809

    Article  CAS  PubMed  Google Scholar 

  • Gadicherla AK, Wang N, Bulic M, Agullo-Pascual E, Lissoni A, De Smet M, Delmar M, Bultynck G, Krysko DV, Camara A et al (2017) Mitochondrial Cx43 hemichannels contribute to mitochondrial calcium entry and cell death in the heart. Basic Res Cardiol 112:27

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Dorado D, Inserte J, Ruiz-Meana M, Gonzalez MA, Solares J, Julia M, Barrabes JA, Soler-Soler J (1997) Gap junction uncoupler heptanol prevents cell-to-cell progression of hypercontracture and limits necrosis during myocardial reperfusion. Circulation 96:3579–3586

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Dorado D, Rodriguez-Sinovas A, Ruiz-Meana M (2004) Gap junction-mediated spread of cell injury and death during myocardial ischemia-reperfusion. Cardiovasc Res 61:386–401

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Dorado D, Ruiz-Meana M, Padilla F, Rodriguez-Sinovas A, Mirabet M (2002) Gap junction-mediated intercellular communication in ischemic preconditioning. Cardiovasc Res 55:456–465

    Article  CAS  PubMed  Google Scholar 

  • Giepmans BN (2004) Gap junctions and connexin-interacting proteins. Cardiovasc Res 62:233–245

    Article  CAS  PubMed  Google Scholar 

  • Giepmans BN (2006) Role of connexin 43 - interacting proteins at gap junctions. Adv Cardiol 42:41–56

    Article  CAS  PubMed  Google Scholar 

  • Glass BJ, Hu RG, Phillips AR, Becker DL (2015) The action of mimetic peptides on connexins protects fibroblasts from the negative effects of ischemia reperfusion. Biol Open 4:1473–1480

    Article  PubMed  PubMed Central  Google Scholar 

  • Gross GJ, Peart JN (2003) KATP channels and myocardial preconditioning: an update. Am J Phys Heart Circ Phys 285:H921–H930

    CAS  Google Scholar 

  • Grover GJ, Garlid KD (2000) ATP-sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cell Cardiol 32:677–695

    Article  CAS  PubMed  Google Scholar 

  • Halkos ME, Kerendi F, Corvera JS, Wang NP, Kin H, Payne CS, Sun HY, Guyton RA, Vinten-Johansen J, Zhao ZQ (2004) Myocardial protection with postconditioning is not enhanced by ischemic preconditioning. Ann Thorac Surg 78:961–969

    Article  PubMed  Google Scholar 

  • Hausenloy D, Wynne A, Duchen M, Yellon D (2004) Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 109:1714–1717

    Article  CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Tsang A, Yellon DM (2005) The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med 15:69–75

    Article  CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 70:240–253

    Article  CAS  PubMed  Google Scholar 

  • Hawat G, Benderdour M, Rousseau G, Baroudi G (2010) Connexin 43 mimetic peptide Gap26 confers protection to intact heart against myocardial ischemia injury. Pflugers Arch 460:583–592

    Article  CAS  PubMed  Google Scholar 

  • Hawat G, Helie P, Baroudi G (2012) Single intravenous low-dose injections of connexin 43 mimetic peptides protect ischemic heart in vivo against myocardial infarction. J Mol Cell Cardiol 53:559–566

    Article  CAS  PubMed  Google Scholar 

  • He H, Li N, Zhao Z, Han F, Wang X, Zeng Y (2015) Ischemic postconditioning improves the expression of cellular membrane connexin 43 and attenuates the reperfusion injury in rat acute myocardial infarction. Biomed Rep 3:668–674

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, Garcia-Dorado D, Di Lisa F, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586

    Article  CAS  PubMed  Google Scholar 

  • Heusch G, Büchert A, Feldhaus S, Schulz R (2006) No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol 101:354–356

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Sato T, Seharaseyon J, Liu Y, Johns DC, O'Rourke B, Marban E (1999) Pharmacological and histochemical distinctions between molecularly defined sarcolemmal KATP channels and native cardiac mitochondrial KATP channels. Mol Pharmacol 55:1000–1005

    Article  CAS  PubMed  Google Scholar 

  • Iliodromitis EK, Georgiadis M, Cohen MV, Downey JM, Bofilis E, Kremastinos DT (2006) Protection from postconditioning depends on the number of short ischemic insults in anesthetized pigs. Basic Res Cardiol 101:502–507

    Article  PubMed  Google Scholar 

  • Inagaki N, Gonoi T, Clement JP, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J (1995) Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170

    Article  CAS  PubMed  Google Scholar 

  • Inoue I, Nagase H, Kishi K, Higuti T (1991) ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352:244–247

    Article  CAS  PubMed  Google Scholar 

  • Isidoro Tavares N, Philip-Couderc P, Papageorgiou I, Baertschi AJ, Lerch R, Montessuit C (2007) Expression and function of ATP-dependent potassium channels in late post-infarction remodeling. J Mol Cell Cardiol 42:1016–1025

    Article  CAS  PubMed  Google Scholar 

  • Jabr RI, Cole WC (1993) Alterations in electrical activity and membrane currents induced by intracellular oxygen-derived free radical stress in guinea pig ventricular myocytes. Circ Res 72:1229–1244

    Article  CAS  PubMed  Google Scholar 

  • Jahangir A, Terzic A, Shen WK (2001) Potassium channel openers: therapeutic potential in cardiology and medicine. Expert Opin Pharmacother 2:1995–2010

    Article  CAS  PubMed  Google Scholar 

  • Jain SK, Schuessler RB, Saffitz JE (2003) Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning. Circ Res 92:1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Kis B, Nagy K, Snipes JA, Rajapakse NC, Horiguchi T, Grover GJ, Busija DW (2004) The mitochondrial K(ATP) channel opener BMS-191095 induces neuronal preconditioning. Neuroreport 15:345–349

    Article  CAS  PubMed  Google Scholar 

  • Kis B, Rajapakse NC, Snipes JA, Nagy K, Horiguchi T, Busija DW (2003) Diazoxide induces delayed pre-conditioning in cultured rat cortical neurons. J Neurochem 87:969–980

    Article  CAS  PubMed  Google Scholar 

  • Krieg T, Cohen MV, Downey JM (2003) Mitochondria and their role in preconditioning's trigger phase. Basic Res Cardiol 98:228–234

    CAS  PubMed  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  CAS  PubMed  Google Scholar 

  • Laird DW (2005) Connexin phosphorylation as a regulatory event linked to gap junction internalization and degradation. Biochim Biophys Acta 1711:172–182

    Article  CAS  PubMed  Google Scholar 

  • Lampe PD, Lau AF (2000) Regulation of gap junctions by phosphorylation of connexins. Arch Biochem Biophys 384:205–215

    Article  CAS  PubMed  Google Scholar 

  • Lampe PD, Lau AF (2004) The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol 36:1171–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laniado ME, Abel PD, Lalani e N (1997) Ion channels. BMJ 315:1171–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurent G, Leong-Poi H, Mangat I, Moe GW, Hu X, So PP, Tarulli E, Ramadeen A, Rossman EI, Hennan JK et al (2009) Effects of chronic gap junction conduction-enhancing antiarrhythmic peptide GAP-134 administration on experimental atrial fibrillation in dogs. Circ Arrhythmia Electrophysiol 2:171–178

    Article  CAS  Google Scholar 

  • Lee TM, Lin CC, Lien HY, Chen CC (2012) K ATP channel agonists preserve connexin43 protein in infarcted rats by a protein kinase C-dependent pathway. J Cell Mol Med 16:776–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Whittaker P, Yao M, Kloner RA, Przyklenk K (2002) The gap junction uncoupler heptanol abrogates infarct size reduction with preconditioning in mouse hearts. Cardiovasc Pathol 11:158–165

    Article  CAS  PubMed  Google Scholar 

  • Li W, Hertzberg EL, Spray DC (2005) Regulation of connexin43-protein binding in astrocytes in response to chemical ischemia/hypoxia. J Biol Chem 280:7941–7948

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Lu C, Wan R, Auyeung WW, Mattson MP (2002) Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release. J Cereb Blood Flow Metab 22:431–443

    Article  CAS  PubMed  Google Scholar 

  • Lu G, Haider H, Porollo A, Ashraf M (2010) Mitochondria-specific transgenic overexpression of connexin-43 simulates preconditioning-induced cytoprotection of stem cells. Cardiovasc Res 88:277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin-Garcia J, Goldenthal MJ (2004) Mitochondria play a critical role in cardioprotection. J Card Fail 10:55–66

    Article  CAS  PubMed  Google Scholar 

  • Matsuuchi L, Naus CC (2013) Gap junction proteins on the move: connexins, the cytoskeleton and migration. Biochim Biophys Acta 1828:94–108

    Article  CAS  PubMed  Google Scholar 

  • McLaine PN, Drummond KN (1971) Intravenous diazoxide for severe hypertension in childhood. J Pediatr 79:829–832

    Article  CAS  PubMed  Google Scholar 

  • Meller R, Minami M, Cameron JA, Impey S, Chen D, Lan JQ, Henshall DC, Simon RP (2005) CREB-mediated Bcl-2 protein expression after ischemic preconditioning. J Cereb Blood Flow Metab 25:234–246

    Article  CAS  PubMed  Google Scholar 

  • Melov S, Schneider JA, Day BJ, Hinerfeld D, Coskun P, Mirra SS, Crapo JD, Wallace DC (1998) A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nat Genet 18:159–163

    Article  CAS  PubMed  Google Scholar 

  • Michela P, Velia V, Aldo P, Ada P (2015) Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol 768:71–76

    Article  CAS  PubMed  Google Scholar 

  • Miro-Casas E, Ruiz-Meana M, Agullo E, Stahlhofen S, Rodriguez-Sinovas A, Cabestrero A, Jorge I, Torre I, Vazquez J, Boengler K et al (2009) Connexin43 in cardiomyocyte mitochondria contributes to mitochondrial potassium uptake. Cardiovasc Res 83:747–756

    Article  CAS  PubMed  Google Scholar 

  • Miura T, Ohnuma Y, Kuno A, Tanno M, Ichikawa Y, Nakamura Y, Yano T, Miki T, Sakamoto J, Shimamoto K (2004) Protective role of gap junctions in preconditioning against myocardial infarction. Am J Phys Heart Circ Phys 286:H214–H221

    CAS  Google Scholar 

  • Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Article  CAS  PubMed  Google Scholar 

  • Naitoh K, Ichikawa Y, Miura T, Nakamura Y, Miki T, Ikeda Y, Kobayashi H, Nishihara M, Ohori K, Shimamoto K (2006) MitoKATP channel activation suppresses gap junction permeability in the ischemic myocardium by an ERK-dependent mechanism. Cardiovasc Res 70:374–383

    Article  CAS  PubMed  Google Scholar 

  • Nakase T, Maeda T, Yoshida Y, Nagata K (2009) Ischemia alters the expression of connexins in the aged human brain. J Biomed Biotechnol 2009:147946

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishida M, Maruyama Y, Tanaka R, Kontani K, Nagao T, Kurose H (2000) G alpha(i) and G alpha(o) are target proteins of reactive oxygen species. Nature 408:492–495

    Article  CAS  PubMed  Google Scholar 

  • Pain T, Yang XM, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM (2000) Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res 87:460–466

    Article  CAS  PubMed  Google Scholar 

  • Paucek P, Mironova G, Mahdi F, Beavis AD, Woldegiorgis G, Garlid KD (1992) Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K+ channel from rat liver and beef heart mitochondria. J Biol Chem 267:26062–26069

    CAS  PubMed  Google Scholar 

  • Hanley PJ, Daut J (2005) KATP channels and preconditioning: a re-examination of the role of mitochondrial KATP channels and an overview of alternative mechanisms. J Mol Cell Cardiol 39:17–50

    Article  CAS  PubMed  Google Scholar 

  • Philipp S, Yang X, Cui L, Davis AM, Downey JM, Cohen MV (2006) Postconditioning protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade. Cardiovasc Res 70:308–314

    Article  CAS  PubMed  Google Scholar 

  • Popolo A, Pecoraro M, Pinto A (2014) Effect of adenosine on isoproterenol-induced hypertrophy in vitro. A preliminary study. PhOL 1:121–126

    CAS  Google Scholar 

  • Ptacek LJ, Fu YH (2004) Channels and disease: past, present, and future. Arch Neurol 61:1665–1668

    Article  PubMed  Google Scholar 

  • Rodriguez-Sinovas A, Boengler K, Cabestrero A, Gres P, Morente M, Ruiz-Meana M, Konietzka I, Miro E, Totzeck A, Heusch G et al (2006a) Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection. Circ Res 99:93–101

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Sinovas A, Garcia-Dorado D, Ruiz-Meana M, Soler-Soler J (2006b) Protective effect of gap junction uncouplers given during hypoxia against reoxygenation injury in isolated rat hearts. Am J Phys Heart Circ Phys 290:H648–H656

    CAS  Google Scholar 

  • Ruiz-Meana M, Rodriguez-Sinovas A, Cabestrero A, Boengler K, Heusch G, Garcia-Dorado D (2008) Mitochondrial connexin43 as a new player in the pathophysiology of myocardial ischaemia-reperfusion injury. Cardiovasc Res 77:325–333

    Article  CAS  PubMed  Google Scholar 

  • Salman R, Johnsen J, Lassen TR, Hansen RS, Botker HE, Schmidt MR (2017) Effects of Rotigaptide and RIC on ischemia reperfusion injury in the in vitro rabbit heart. Cardiovasc Pharm 6:209

    Google Scholar 

  • Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81:299–307

    Article  CAS  PubMed  Google Scholar 

  • Schenzer A, Friedrich T, Pusch M, Saftig P, Jentsch TJ, Grotzinger J, Schwake M (2005) Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine. J Neurosci 25:5051–5060

    Article  CAS  PubMed  Google Scholar 

  • Schulz R, Gres P, Skyschally A, Duschin A, Belosjorow S, Konietzka I, Heusch G (2003) Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. FASEB J 17:1355–1357

    Article  CAS  PubMed  Google Scholar 

  • Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A 91:10771–10778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skyschally A, Amanakis G, Neuhauser M, Kleinbongard P, Heusch G (2017) Impact of electrical defibrillation on infarct size and no-reflow in pigs subjected to myocardial ischemia/reperfusion without and with ischemic conditioning. Am J Phys Heart Circ Phys ajpheart 00293:02017

    Google Scholar 

  • Sohl G, Willecke K (2004) Gap junctions and the connexin protein family. Cardiovasc Res 62:228–232

    Article  PubMed  CAS  Google Scholar 

  • Srisakuldee W, Jeyaraman MM, Nickel BE, Tanguy S, Jiang ZS, Kardami E (2009) Phosphorylation of connexin-43 at serine 262 promotes a cardiac injury-resistant state. Cardiovasc Res 83:672–681

    Article  CAS  PubMed  Google Scholar 

  • Srisakuldee W, Nickel BE, Fandrich RR, Jiang ZS, Kardami E (2006) Administration of FGF-2 to the heart stimulates connexin-43 phosphorylation at protein kinase C target sites. Cell Commun Adhes 13:13–19

    Article  CAS  PubMed  Google Scholar 

  • Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L'Huillier I, Aupetit JF, Bonnefoy E, Finet G, Andre-Fouet X et al (2005) Postconditioning the human heart. Circulation 112:2143–2148

    Article  PubMed  Google Scholar 

  • Stahlhut M, Petersen JS, Hennan JK, Ramirez MT (2006) The antiarrhythmic peptide rotigaptide (ZP123) increases connexin 43 protein expression in neonatal rat ventricular cardiomyocytes. Cell Commun Adhes 13:21–27

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Jiang JF, Zhao CM, Hu CH (2015) Effects of antiarrhythmic peptide 10 on acute ventricular arrhythmia. Asian Pac J Trop Med 8:229–233

    Article  CAS  PubMed  Google Scholar 

  • Szewczyk A, Mikolajek B, Pikula S, Nalecz MJ (1993) Potassium channel openers induce mitochondrial matrix volume changes via activation of ATP-sensitive K+ channel. Pol J Pharmacol 45:437–443

    CAS  PubMed  Google Scholar 

  • Taimor G (2003) Mitochondria as common endpoints in early and late preconditioning. Cardiovasc Res 59:266–267

    Article  CAS  PubMed  Google Scholar 

  • Takashi E, Wang Y, Ashraf M (1999) Activation of mitochondrial K(ATP) channel elicits late preconditioning against myocardial infarction via protein kinase C signaling pathway. Circ Res 85:1146–1153

    Article  CAS  PubMed  Google Scholar 

  • Tittarelli A, Janji B, Van Moer K, Noman MZ, Chouaib S (2015) The selective degradation of synaptic Connexin 43 protein by hypoxia-induced Autophagy impairs natural killer cell-mediated tumor cell killing. J Biol Chem 290:23670–23679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trube G, Hescheler J (1984) Inward-rectifying channels in isolated patches of the heart cell membrane: ATP-dependence and comparison with cell-attached patches. Pflugers Arch 401:178–184

    Article  CAS  PubMed  Google Scholar 

  • Wang N, De Bock M, Antoons G, Gadicherla AK, Bol M, Decrock E, Evans WH, Sipido KR, Bukauskas FF, Leybaert L (2012) Connexin mimetic peptides inhibit Cx43 hemichannel opening triggered by voltage and intracellular Ca2+ elevation. Basic Res Cardiol 107:304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waza AA, Andrabi K, Hussain MU (2014) Protein kinase C (PKC) mediated interaction between conexin43 (Cx43) and K(ATP) channel subunit (Kir6.1) in cardiomyocyte mitochondria: implications in cytoprotection against hypoxia induced cell apoptosis. Cell Signal 26:1909–1917

    Article  CAS  PubMed  Google Scholar 

  • Wu XF, Liu WT, Liu YP, Huang ZJ, Zhang YK, Song XJ (2011) Reopening of ATP-sensitive potassium channels reduces neuropathic pain and regulates astroglial gap junctions in the rat spinal cord. Pain 152:2605–2615

    Article  CAS  PubMed  Google Scholar 

  • Tang X-L, Sato H, Tiwari S, Dawn B, Bi Q, Li Q, Shirk G, Bolli R (2006) Cardioprotection by postconditioning in conscious rats is limited to coronary occlusions <45 minutes. Am J Phys Heart Circ Phys 291:H2308–H2317

    CAS  Google Scholar 

  • Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151

    Article  CAS  PubMed  Google Scholar 

  • Zatta AJ, Kin H, Lee G, Wang N, Jiang R, Lust R, Reeves JG, Mykytenko J, Guyton RA, Zhao ZQ, Vinten-Johansen J (2006) Infarct-sparing effect of myocardial postconditioning is dependent on protein kinase C signalling. Cardiovasc Res 70:315–324

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZQ, Corvera J, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Phys Heart Circ Phys 285:H579–H588

    CAS  Google Scholar 

  • Zhu Z, Li YL, Li DP, He RR (2000) Effect of anoxic preconditioning on ATP-sensitive potassium channels in guinea-pig ventricular myocytes. Pflugers Arch 439:808–813

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Council of Scientific & Industrial Research (CSIR) GOI, New Delhi, is acknowledged for providing a fellowship to Ajaz Ahmad Waza (CSIR-RA fellow: Award letter no. 9/251 (0077) / 2 k/17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashir A. Ganai.

Ethics declarations

Competing interests

The authors declare that no competing interests exist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad Waza, A., Ahmad Bhat, S., Ul Hussain, M. et al. Connexin 43 and ATP-sensitive potassium channels crosstalk: a missing link in hypoxia/ischemia stress. Cell Tissue Res 371, 213–222 (2018). https://doi.org/10.1007/s00441-017-2736-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2736-3

Keywords

Navigation