Skip to main content

Advertisement

Log in

Mitochondrial Cx43 hemichannels contribute to mitochondrial calcium entry and cell death in the heart

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Mitochondrial connexin 43 (Cx43) plays a key role in cardiac cytoprotection caused by repeated exposure to short periods of non-lethal ischemia/reperfusion, a condition known as ischemic preconditioning. Cx43 also forms calcium (Ca2+)-permeable hemichannels that may potentially lead to mitochondrial Ca2+ overload and cell death. Here, we studied the role of Cx43 in facilitating mitochondrial Ca2+ entry and investigated its downstream consequences. To that purpose, we used various connexin-targeting peptides interacting with extracellular (Gap26) and intracellular (Gap19, RRNYRRNY) Cx43 domains, and tested their effect on mitochondrial dye- and Ca2+-uptake, electrophysiological properties of plasmalemmal and mitochondrial Cx43 channels, and cell injury/cell death. Our results in isolated mice cardiac subsarcolemmal mitochondria indicate that Cx43 forms hemichannels that contribute to Ca2+ entry and may trigger permeability transition and cell injury/death. RRNYRRNY displayed the strongest effects in all assays and inhibited plasma membrane as well as mitochondrial Cx43 hemichannels. RRNYRRNY also strongly reduced the infarct size in ex vivo cardiac ischemia–reperfusion studies. These results indicate that Cx43 contributes to mitochondrial Ca2+ homeostasis and is involved in triggering cell injury/death pathways that can be inhibited by RRNYRRNY peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdallah Y, Kasseckert SA, Iraqi W, Said M, Shahzad T, Erdogan A, Neuhof C, Gunduz D, Schluter K-D, Tillmanns H, Piper HM, Reusch HP, Ladilov Y (2011) Interplay between Ca2+ cycling and mitochondrial permeability transition pores promotes reperfusion-induced injury of cardiac myocytes. J Cell Mol Med 15:2478–2485. doi:10.1111/j.1582-4934.2010.01249.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Agullo-Pascual E, Lin X, Leo-Macias A, Zhang M, Liang F-X, Li Z, Pfenniger A, Lubkemeier I, Keegan S, Fenyo D, Willecke K, Rothenberg E, Delmar M (2014) Super-resolution imaging reveals that loss of the C-terminus of connexin43 limits microtubule plus-end capture and NaV1.5 localization at the intercalated disc. Cardiovasc Res 104:371–381. doi:10.1093/cvr/cvu195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aldakkak M, Camara AKS, Heisner JS, Yang M, Stowe DF (2011) Ranolazine reduces Ca2+ overload and oxidative stress and improves mitochondrial integrity to protect against ischemia reperfusion injury in isolated hearts. Pharmacol Res 64:381–392. doi:10.1016/j.phrs.2011.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aldakkak M, Stowe DF, Chen Q, Lesnefsky EJ, Camara AKS (2008) Inhibited mitochondrial respiration by amobarbital during cardiac ischaemia improves redox state and reduces matrix Ca2+ overload and ROS release. Cardiovasc Res 77:406–415. doi:10.1016/j.cardiores.2007.08.008

    CAS  PubMed  Google Scholar 

  5. Azarashvili T, Baburina Y, Grachev D, Krestinina O, Evtodienko Y, Stricker R, Reiser G (2011) Calcium-induced permeability transition in rat brain mitochondria is promoted by carbenoxolone through targeting connexin43. Am J Physiol Cell Physiol 300:C707–C720. doi:10.1152/ajpcell.00061.2010

    Article  CAS  PubMed  Google Scholar 

  6. Azarashvili T, Baburina Y, Grachev D, Krestinina O, Papadopoulos V, Lemasters JJ, Odinokova I, Reiser G (2014) Carbenoxolone induces permeability transition pore opening in rat mitochondria via the translocator protein TSPO and connexin43. Arch Biochem Biophys 558:87–94. doi:10.1016/j.abb.2014.06.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Battaglia V, Brunati AM, Fiore C, Rossi CA, Salvi M, Tibaldi E, Palermo M, Armanini D, Toninello A (2008) Glycyrrhetinic acid as inhibitor or amplifier of permeability transition in rat heart mitochondria. Biochim Biophys Acta 1778:313–323. doi:10.1016/j.bbamem.2007.10.008

    Article  CAS  PubMed  Google Scholar 

  8. Ben-Hail D, Shoshan-Barmatz V (2016) VDAC1-interacting anion transport inhibitors inhibit VDAC1 oligomerization and apoptosis. Biochim Biophys Acta 1863:1612–1623. doi:10.1016/j.bbamcr.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  9. De Bock M, Culot M, Wang N, Bol M, Decrock E, De Vuyst E, da Costa A, Dauwe I, Vinken M, Simon AM, Rogiers V, De Ley G, Evans WH, Bultynck G, Dupont G, Cecchelli R, Leybaert L (2011) Connexin channels provide a target to manipulate brain endothelial calcium dynamics and blood–brain barrier permeability. J Cereb Blood Flow Metab 31:1942–1957. doi:10.1038/jcbfm.2011.86

    Article  PubMed  PubMed Central  Google Scholar 

  10. De Bock M, Wang N, Bol M, Decrock E, Ponsaerts R, Bultynck G, Dupont G, Leybaert L (2012) Connexin 43 hemichannels contribute to cytoplasmic Ca2+ oscillations by providing a bimodal Ca2+ -dependent Ca2+ entry pathway. J Biol Chem 287:12250–12266. doi:10.1074/jbc.M111.299610

    Article  PubMed  PubMed Central  Google Scholar 

  11. De Bock M, Wang N, Decrock E, Bol M, Gadicherla AK, Culot M, Cecchelli R, Bultynck G, Leybaert L (2013) Endothelial calcium dynamics, connexin channels and blood–brain barrier function. Prog Neurobiol 108:1–20. doi:10.1016/j.pneurobio.2013.06.001

    Article  PubMed  Google Scholar 

  12. Boengler K, Dodoni G, Rodriguez-Sinovas A, Cabestrero A, Ruiz-Meana M, Gres P, Konietzka I, Lopez-Iglesias C, Garcia-Dorado D, Di Lisa F, Heusch G, Schulz R (2005) Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovasc Res 67:234–244. doi:10.1016/j.cardiores.2005.04.014

    Article  CAS  PubMed  Google Scholar 

  13. Boengler K, Konietzka I, Buechert A, Heinen Y, Garcia-Dorado D, Heusch G, Schulz R (2007) Loss of ischemic preconditioning’s cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. Am J Physiol Heart Circ Physiol 292:H1764–H1769. doi:10.1152/ajpheart.01071.2006

    Article  CAS  PubMed  Google Scholar 

  14. Boengler K, Ruiz-Meana M, Gent S, Ungefug E, Soetkamp D, Miro-Casas E, Cabestrero A, Fernandez-Sanz C, Semenzato M, Di Lisa F, Rohrbach S, Garcia-Dorado D, Heusch G, Schulz R (2012) Mitochondrial connexin 43 impacts on respiratory complex I activity and mitochondrial oxygen consumption. J Cell Mol Med 16:1649–1655. doi:10.1111/j.1582-4934.2011.01516.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boengler K, Stahlhofen S, Sand A, Gres P, Ruiz-Meana M, Garcia-Dorado D, Heusch G, Schulz R, van de Sand A, Gres P, Ruiz-Meana M, Garcia-Dorado D, Heusch G, Schulz R (2009) Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria. Basic Res Cardiol 104:141–147. doi:10.1007/s00395-009-0007-5

    Article  CAS  PubMed  Google Scholar 

  16. Boengler K, Ungefug E, Heusch G, Leybaert L, Schulz R (2013) Connexin 43 impacts on mitochondrial potassium uptake. Front Pharmacol 4:73. doi:10.3389/fphar.2013.00073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Braet K, Vandamme W, Martin PEM, Evans WH, Leybaert L (2003) Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26. Cell Calcium 33:37–48

    Article  CAS  PubMed  Google Scholar 

  18. Budas GR, Churchill EN, Disatnik M-H, Sun L, Mochly-Rosen D (2010) Mitochondrial import of PKCepsilon is mediated by HSP90: a role in cardioprotection from ischaemia and reperfusion injury. Cardiovasc Res 88:83–92. doi:10.1093/cvr/cvq154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chacon E, Acosta D (1991) Mitochondrial regulation of superoxide by Ca2+: an alternate mechanism for the cardiotoxicity of doxorubicin. Toxicol Appl Pharmacol 107:117–128

    Article  CAS  PubMed  Google Scholar 

  20. Cheng Q, Sedlic F, Pravdic D, Bosnjak ZJ, Kwok WM (2011) Biphasic effect of nitric oxide on the cardiac voltage-dependent anion channel. FEBS Lett 585:328–334. doi:10.1016/j.febslet.2010.12.008

    Article  CAS  PubMed  Google Scholar 

  21. Decrock E, Krysko DV, Vinken M, Kaczmarek A, Crispino G, Bol M, Wang N, De Bock M, De Vuyst E, Naus CC, Rogiers V, Vandenabeele P, Erneux C, Mammano F, Bultynck G, Leybaert L (2012) Transfer of IP3 through gap junctions is critical, but not sufficient, for the spread of apoptosis. Cell Death Differ 19:947–957. doi:10.1038/cdd.2011.176

  22. Decrock E, Vinken M, Bol M, D’Herde K, Rogiers V, Vandenabeele P, Krysko DV, Bultynck G, Leybaert L (2011) Calcium and connexin-based intercellular communication, a deadly catch? Cell Calcium 50:310–321. doi:10.1016/j.ceca.2011.05.007

    Article  CAS  PubMed  Google Scholar 

  23. Decrock E, De Vuyst E, Vinken M, Van Moorhem M, Vranckx K, Wang N, Van Laeken L, De Bock M, D’Herde K, Lai CP, Rogiers V, Evans WH, Naus CC, Leybaert L (2009) Connexin 43 hemichannels contribute to the propagation of apoptotic cell death in a rat C6 glioma cell model. Cell Death Differ 16:151–163. doi:10.1038/cdd.2008.138

    Article  CAS  PubMed  Google Scholar 

  24. Denuc A, Núñez E, Calvo E, Loureiro M, Miro-Casas E, Guarás A, Vázquez J, Garcia-Dorado D (2016) New protein–protein interactions of mitochondrial connexin 43 in mouse heart. J Cell Mol Med 20:794–803. doi:10.1111/jcmm.12792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ek JF, Delmar M, Perzova R, Taffet SM (1994) Role of histidine 95 on pH gating of the cardiac gap junction protein connexin43. Circ Res 74:1058–1064

    Article  CAS  PubMed  Google Scholar 

  26. Erickson HP (2009) Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proc Online 11:32–51. doi:10.1007/s12575-009-9008-x

    Article  CAS  Google Scholar 

  27. Fiore C, Salvi M, Palermo M, Sinigaglia G, Armanini D, Toninello A (2004) On the mechanism of mitochondrial permeability transition induction by glycyrrhetinic acid. Biochim Biophys Acta 1658:195–201. doi:10.1016/j.bbabio.2004.05.012

    Article  CAS  PubMed  Google Scholar 

  28. Fiori MC, Figueroa V, Zoghbi ME, Saéz JC, Reuss L, Altenberg GA (2012) Permeation of calcium through purified connexin 26 hemichannels. J Biol Chem 287:40826–40834. doi:10.1074/jbc.M112.383281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fiori MC, Reuss L, Cuello LG, Altenberg GA (2014) Functional analysis and regulation of purified connexin hemichannels. Front Physiol 5:1–15. doi:10.3389/fphys.2014.00071

  30. Gadicherla AK, Stowe DF, Antholine WE, Yang M, Camara AKS (2012) Damage to mitochondrial complex i during cardiac ischemia reperfusion injury is reduced indirectly by anti-anginal drug ranolazine. Biochim Biophys Acta Bioenerg 1817:419–429. doi:10.1016/j.bbabio.2011.11.021

    Article  CAS  Google Scholar 

  31. García-Dorado D, Rodríguez-Sinovas A, Ruiz-Meana M (2004) Gap junction-mediated spread of cell injury and death during myocardial ischemia-reperfusion. Cardiovasc Res 61:386–401. doi:10.1016/j.cardiores.2003.11.039

    Article  PubMed  Google Scholar 

  32. Garcia-Dorado D, Ruiz-Meana M, Inserte J, Rodriguez-Sinovas A, Piper HM (2012) Calcium-mediated cell death during myocardial reperfusion. Cardiovasc Res 94:168–180. doi:10.1093/cvr/cvs116

    Article  CAS  PubMed  Google Scholar 

  33. Goldenthal MJ (2016) Mitochondrial involvement in myocyte death and heart failure. Heart Fail Rev 21:137–155. doi:10.1007/s10741-016-9531-1

    Article  CAS  PubMed  Google Scholar 

  34. Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD (2004) Calcium and mitochondria. FEBS Lett 567:96–102. doi:10.1016/j.febslet.2004.03.071

    Article  CAS  PubMed  Google Scholar 

  35. Guo R, Si R, Scott BT, Makino A (2017) Mitochondrial connexin40 regulates mitochondrial calcium uptake in coronary endothelial cells. Am J Physiol Cell Physiol. doi:10.1152/ajpcell.00283.2016

  36. Hawat G, Benderdour M, Rousseau G, Baroudi G (2010) Connexin 43 mimetic peptide Gap26 confers protection to intact heart against myocardial ischemia injury. Pflugers Arch 460:583–592. doi:10.1007/s00424-010-0849-6

    Article  CAS  PubMed  Google Scholar 

  37. Hawat G, Helie P, Baroudi G (2012) Single intravenous low-dose injections of connexin 43 mimetic peptides protect ischemic heart in vivo against myocardial infarction. J Mol Cell Cardiol 53:559–566. doi:10.1016/j.yjmcc.2012.07.008

    Article  CAS  PubMed  Google Scholar 

  38. Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, García-Dorado D, Di Lisa F, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586. doi:10.1161/01.RES.0000181171.65293.65

    Article  CAS  PubMed  Google Scholar 

  39. Heusch G, Büchert A, Feldhaus S, Schulz R (2006) No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol 101:354–356. doi:10.1007/s00395-006-0589-0

    Article  CAS  PubMed  Google Scholar 

  40. Ishikawa S, Kuno A, Tanno M, Miki T, Kouzu H, Itoh T, Sato T, Sunaga D, Murase H, Miura T (2012) Role of connexin-43 in protective PI3K-Akt-GSK-3 signaling in cardiomyocytes. AJP Heart Circ Physiol 302:H2536–H2544. doi:10.1152/ajpheart.00940.2011

  41. Kim DY, Kam Y, Koo SK, Joe CO (1999) Gating connexin 43 channels reconstituted in lipid vesicles by mitogen-activated protein kinase phosphorylation. J Biol Chem 274:5581–5587

    Article  CAS  PubMed  Google Scholar 

  42. Kim SM, Hwang IK, Yoo DY, Eum WS, Kim DW, Shin MJ, Ahn EH, Jo HS, Ryu EJ, Yong JI, Cho S-W, Kwon O-S, Lee KW, Cho YS, Han KH, Park J, Choi SY (2015) Tat-antioxidant 1 protects against stress-induced hippocampal HT-22 cells death and attenuate ischaemic insult in animal model. J Cell Mol Med 19:1333–1345. doi:10.1111/jcmm.12513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kristián T, Siesjö BK (1998) Calcium in ischemic cell death. Stroke 29:705–718. doi:10.1161/01.STR.29.3.705

    Article  PubMed  Google Scholar 

  44. Ladilov YV, Siegmund B, Piper HM (1995) Protection of reoxygenated cardiomyocytes against hypercontracture by inhibition of Na+/H+ exchange. Am J Physiol 268:H1531–H1539

    CAS  PubMed  Google Scholar 

  45. Lax A, Soler F, Fernández-Belda F (2009) Mitochondrial damage as death inducer in heart-derived H9c2 cells: more than one way for an early demise. J Bioenerg Biomembr 41:369–377. doi:10.1007/s10863-009-9236-4

    Article  CAS  PubMed  Google Scholar 

  46. Lemasters JJ, Theruvath TP, Zhong Z, Nieminen A-L (2009) Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta 1787:1395–1401. doi:10.1016/j.bbabio.2009.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lewandowski R, Procida K, Vaidyanathan R, Coombs W, Jalife J, Nielsen MS, Taffet SM, Delmar M (2008) RXP-E: a connexin43-binding peptide that prevents action potential propagation block. Circ Res 103:519–526. doi:10.1161/CIRCRESAHA.108.179069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liang GSL, de Miguel M, Gómez-Hernández JM, Glass JD, Scherer SS, Mintz M, Barrio LC, Fischbeck KH (2005) Severe neuropathy with leaky connexin32 hemichannels. Ann Neurol 57:749–754. doi:10.1002/ana.20459

    Article  CAS  PubMed  Google Scholar 

  49. Di Lisa F, Blank PS, Colonna R, Gambassi G, Silverman HS, Stern MD, Hansford RG (1995) Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. J Physiol 486 Pt 1:1–13

  50. Liu S, Taffet S, Stoner L, Delmar M, Vallano ML, Jalife J (1993) A structural basis for the unequal sensitivity of the major cardiac and liver gap junctions to intracellular acidification: the carboxyl tail length. Biophys J 64:1422–1433. doi:10.1016/S0006-3495(93)81508-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lu G, Haider HK, Jiang S, Ashraf M (2009) Sca-1+ stem cell survival and engraftment in the infarcted heart: dual role for preconditioning-induced connexin-43. Circulation 119:2587–2596. doi:10.1161/CIRCULATIONAHA.108.827691

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lu G, Haider HK, Porollo A, Ashraf M (2010) Mitochondria-specific transgenic overexpression of connexin-43 simulates preconditioning-induced cytoprotection of stem cells. Cardiovasc Res 88:277–286. doi:10.1093/cvr/cvq293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu G, Jiang S, Ashraf M, Haider KH (2012) Subcellular preconditioning of stem cells: mito-Cx43 gene targeting is cytoprotective via shift of mitochondrial Bak and Bcl-xL balance. Regen Med 7:323–334. doi:10.2217/rme.12.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miro-Casas E, Ruiz-Meana M, Agullo E, Stahlhofen S, Rodríguez-Sinovas A, Cabestrero A, Jorge I, Torre I, Vazquez J, Boengler K, Schulz R, Heusch G, Garcia-Dorado D (2009) Connexin43 in cardiomyocyte mitochondria contributes to mitochondrial potassium uptake. Cardiovasc Res 83:747–756. doi:10.1093/cvr/cvp157

    Article  CAS  PubMed  Google Scholar 

  55. O’Rourke B (2007) Mitochondrial ion channels. Annu Rev Physiol 69:19–49. doi:10.1146/annurev.physiol.69.031905.163804

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pahujaa M, Anikin M, Goldberg GS (2007) Phosphorylation of connexin43 induced by Src: regulation of gap junctional communication between transformed cells. Exp Cell Res 313:4083–4090. doi:10.1016/j.yexcr.2007.09.010

    Article  CAS  PubMed  Google Scholar 

  57. Palty R, Sekler I (2012) The mitochondrial Na(+)/Ca(2+) exchanger. Cell Calcium 52:9–15. doi:10.1016/j.ceca.2012.02.010

    Article  CAS  PubMed  Google Scholar 

  58. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27:6407–6418. doi:10.1038/onc.2008.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Riess ML, Rhodes SS, Stowe DF, Aldakkak M, Camara AKS (2009) Comparison of cumulative planimetry versus manual dissection to assess experimental infarct size in isolated hearts. J Pharmacol Toxicol Methods 60:275–280. doi:10.1016/j.vascn.2009.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rodriguez-Sinovas A, Boengler K, Cabestrero A, Gres P, Morente M, Ruiz-Meana M, Konietzka I, Miró E, Totzeck A, Heusch G, Schulz R, Garcia-Dorado D (2006) Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection. Circ Res 99:93–101. doi:10.1161/01.RES.0000230315.56904.de

    Article  CAS  PubMed  Google Scholar 

  61. Ruiz-Meana M, Abellán A, Miró-Casas E, Garcia-Dorado D (2007) Opening of mitochondrial permeability transition pore induces hypercontracture in Ca2+ overloaded cardiac myocytes. Basic Res Cardiol 102:542–552. doi:10.1007/s00395-007-0675-y

    Article  CAS  PubMed  Google Scholar 

  62. Ruiz-Meana M, Garcia-Dorado D, Hofstaetter B, Piper HM, Soler-Soler J (1999) Propagation of cardiomyocyte hypercontracture by passage of Na(+) through gap junctions. Circ Res 85:280–287

    Article  CAS  PubMed  Google Scholar 

  63. Ruiz-Meana M, Núñez E, Miro-Casas E, Martínez-Acedo P, Barba I, Rodriguez-Sinovas A, Inserte J, Fernandez-Sanz C, Hernando V, Vázquez J, Garcia-Dorado D (2014) Ischemic preconditioning protects cardiomyocyte mitochondria through mechanisms independent of cytosol. J Mol Cell Cardiol 68:79–88. doi:10.1016/j.yjmcc.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  64. Schalper KA, Sánchez HA, Lee SC, Altenberg GA, Nathanson MH, Sáez JC (2010) Connexin 43 hemichannels mediate the Ca2+ influx induced by extracellular alkalinization. Am J Physiol Cell Physiol 299:C1504–C1515. doi:10.1152/ajpcell.00015.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schulz R, Görge PM, Görbe A, Ferdinandy P, Lampe PD, Leybaert L (2015) Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection. Pharmacol Ther 153:90–106. doi:10.1016/j.pharmthera.2015.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shahzad T, Kasseckert SA, Iraqi W, Johnson V, Schulz R, Schluter K-D, Dorr O, Parahuleva M, Hamm C, Ladilov Y, Abdallah Y (2013) Mechanisms involved in postconditioning protection of cardiomyocytes against acute reperfusion injury. J Mol Cell Cardiol 58:209–216. doi:10.1016/j.yjmcc.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  67. Shibayama J (2006) Identification of a novel peptide that interferes with the chemical regulation of connexin43. Circ Res 98:1365–1372. doi:10.1161/01.RES.0000225911.24228.9c

    Article  CAS  PubMed  Google Scholar 

  68. Srisakuldee W, Jeyaraman MM, Nickel BE, Tanguy S, Jiang Z-S, Kardami E (2009) Phosphorylation of connexin-43 at serine 262 promotes a cardiac injury-resistant state. Cardiovasc Res 83:672–681. doi:10.1093/cvr/cvp142

    Article  CAS  PubMed  Google Scholar 

  69. Srisakuldee W, Makazan Z, Nickel BE, Zhang F, Thliveris JA, Pasumarthi KBS, Kardami E (2014) The FGF-2-triggered protection of cardiac subsarcolemmal mitochondria from calcium overload is mitochondrial connexin 43-dependent. Cardiovasc Res 103:72–80. doi:10.1093/cvr/cvu066

  70. De Stefani D, Rizzuto R (2014) Molecular control of mitochondrial calcium uptake. Biochem Biophys Res Commun 449:373–376. doi:10.1016/j.bbrc.2014.04.142

    Article  PubMed  Google Scholar 

  71. Stewart S, Lesnefsky EJ, Chen Q (2009) Reversible blockade of electron transport with amobarbital at the onset of reperfusion attenuates cardiac injury. Transl Res 153:224–231. doi:10.1016/j.trsl.2009.02.003

    Article  CAS  PubMed  Google Scholar 

  72. Stowe DF, Gadicherla AK, Zhou Y, Aldakkak M, Cheng Q, Kwok W-MM, Jiang MT, Heisner JS, Yang M, Camara AKSS (2013) Protection against cardiac injury by small Ca2+-sensitive K+ channels identified in guinea pig cardiac inner mitochondrial membrane. Biochim Biophys Acta Biomembr 1828:427–442. doi:10.1016/j.bbamem.2012.08.031

    Article  CAS  Google Scholar 

  73. Thimm J, Mechler A, Lin H, Rhee S, Lal R (2005) Calcium-dependent open/closed conformations and interfacial energy maps of reconstituted hemichannels. J Biol Chem 280:10646–10654. doi:10.1074/jbc.M412749200

    Article  CAS  PubMed  Google Scholar 

  74. Trexler EB, Bukauskas FF, Bennett MV, Bargiello TA, Verselis VK (1999) Rapid and direct effects of pH on connexins revealed by the connexin46 hemichannel preparation. J Gen Physiol 113:721–742

    Article  CAS  PubMed  Google Scholar 

  75. Vasington FD, Gazzotti P, Tiozzo R, Carafoli E (1972) The effect of ruthenium red on Ca 2+ transport and respiration in rat liver mitochondria. Biochim Biophys Acta 256:43–54

    Article  CAS  PubMed  Google Scholar 

  76. Verma V, Larsen BD, Coombs W, Lin X, Sarrou E, Taffet SM, Delmar M (2010) Design and characterization of the first peptidomimetic molecule that prevents acidification-induced closure of cardiac gap junctions. Heart Rhythm 7:1491–1498. doi:10.1016/j.hrthm.2010.06.028

    Article  PubMed  PubMed Central  Google Scholar 

  77. Verma V, Larsen BD, Coombs W, Lin X, Spagnol G, Sorgen PL, Taffet SM, Delmar M (2009) Novel pharmacophores of connexin43 based on the “RXP” series of Cx43-binding peptides. Circ Res 105:176–184. doi:10.1161/CIRCRESAHA.109.200576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. De Vuyst E, Decrock E, De Bock M, Yamasaki H, Naus CC, Evans WH, Leybaert L (2007) Connexin hemichannels and gap junction channels are differentially influenced by lipopolysaccharide and basic fibroblast growth factor. Mol Biol Cell 18:34–46. doi:10.1091/mbc.E06-03-0182

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wang N, De Bock M, Antoons G, Gadicherla AK, Bol M, Decrock E, Evans WH, Sipido KR, Bukauskas FF, Leybaert L (2012) Connexin mimetic peptides inhibit Cx43 hemichannel opening triggered by voltage and intracellular Ca2+ elevation. Basic Res Cardiol 107:1–17. doi:10.1007/s00395-012-0304-2

    Article  Google Scholar 

  80. Wang N, De Bock M, Decrock E, Bol M, Gadicherla A, Bultynck G, Leybaert L (2013) Connexin targeting peptides as inhibitors of voltage- and intracellular Ca2+ -triggered Cx43 hemichannel opening. Neuropharmacology 75:506–516. doi:10.1016/j.neuropharm.2013.08.021

    Article  CAS  PubMed  Google Scholar 

  81. Wang N, De Vuyst E, Ponsaerts R, Boengler K, Palacios-Prado N, Wauman J, Lai CP, De Bock M, Decrock E, Bol M, Vinken M, Rogiers V, Tavernier J, Evans WH, Naus CC, Bukauskas FF, Sipido KR, Heusch G, Schulz R, Bultynck G, Leybaert L (2013) Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury. Basic Res Cardiol. doi:10.1007/s00395-012-0309-x

    PubMed Central  Google Scholar 

  82. Waza AA, Andrabi K, Hussain MU (2014) Protein kinase C (PKC) mediated interaction between conexin43 (Cx43) and K(+)(ATP) channel subunit (Kir6.1) in cardiomyocyte mitochondria: implications in cytoprotection against hypoxia induced cell apoptosis. Cell Signal 26:1909–1917. doi:10.1016/j.cellsig.2014.05.002

    Article  CAS  PubMed  Google Scholar 

  83. Weber PA, Chang H-C, Spaeth KE, Nitsche JM, Nicholson BJ (2004) The permeability of gap junction channels to probes of different size is dependent on connexin composition and permeant-pore affinities. Biophys J 87:958–973. doi:10.1529/biophysj.103.036350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Webster KA (2012) Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Future Cardiol 8:863–884. doi:10.2217/fca.12.58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wong CW, Christen T, Roth I, Chadjichristos CE, Derouette J-P, Foglia BF, Chanson M, Goodenough DA, Kwak BR (2006) Connexin37 protects against atherosclerosis by regulating monocyte adhesion. Nat Med 12:950–954. doi:10.1038/nm1441

    Article  CAS  PubMed  Google Scholar 

  86. Zong L, Zhu Y, Liang R, Zhao H-B (2016) Gap junction mediated miRNA intercellular transfer and gene regulation: a novel mechanism for intercellular genetic communication. Sci Rep 6:19884. doi:10.1038/srep19884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fund for Scientific Research Flanders, Belgium (G.0A82.13N to L.L. and A.K.G.), the Interuniversity Attraction Poles Program (P7/10 to L.L.), and Ghent University (BOF to L.L.). We are very grateful to Prof. R. Lefebvre for the shared use of equipment. We sincerely thank Dr. Ellen Cocquyt and Thi Thu Hang Dang for superb technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Leybaert.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1001 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadicherla, A.K., Wang, N., Bulic, M. et al. Mitochondrial Cx43 hemichannels contribute to mitochondrial calcium entry and cell death in the heart. Basic Res Cardiol 112, 27 (2017). https://doi.org/10.1007/s00395-017-0618-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-017-0618-1

Keywords

Navigation