Aimone JB, Li Y, Lee SW et al (2014) Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 94:991–1026. https://doi.org/10.1152/physrev.00004.2014
CAS
Article
PubMed
PubMed Central
Google Scholar
Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335. https://doi.org/10.1002/cne.901240303
CAS
Article
PubMed
Google Scholar
Amrein I, Isler K, Lipp HP (2011) Comparing adult hippocampal neurogenesis in mammalian species and orders: influence of chronological age and life history stage. Eur J Neurosci 34:978–987. https://doi.org/10.1111/j.1460-9568.2011.07804.x
Article
PubMed
Google Scholar
Bachstetter AD, Pabon MM, Cole MJ et al (2008) Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain. BMC Neurosci 9:22. https://doi.org/10.1186/1471-2202-9-22
Article
PubMed
PubMed Central
Google Scholar
Baht GS, Silkstone D, Vi L et al (2015) Exposure to a youthful circulaton rejuvenates bone repair through modulation of β-catenin. Nat Commun 6:7131. https://doi.org/10.1038/ncomms8131
CAS
Article
PubMed
PubMed Central
Google Scholar
Barker JM, Boonstra R, Wojtowicz JM (2011) From pattern to purpose: how comparative studies contribute to understanding the function of adult neurogenesis. Eur J Neurosci 34:963–977. https://doi.org/10.1111/j.1460-9568.2011.07823.x
Article
PubMed
Google Scholar
Baruch K, Deczkowska A, David E et al (2014) Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 346:89–93. https://doi.org/10.1126/science.1252945
CAS
Article
PubMed
PubMed Central
Google Scholar
Baruch K, Ron-Harel N, Gal H et al (2013) CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc Natl Acad Sci U S A 110:2264–2269. https://doi.org/10.1073/pnas.1211270110
CAS
Article
PubMed
PubMed Central
Google Scholar
Ben-Hur T, Ben-Menachem O, Furer V et al (2003) Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol Cell Neurosci 24:623–631. https://doi.org/10.1016/S1044-7431(03)00218-5
CAS
Article
PubMed
Google Scholar
Bickford PC, Kaneko Y, Grimmig B et al (2015) Nutraceutical intervention reverses the negative effects of blood from aged rats on stem cells. Age (Omaha). https://doi.org/10.1007/s11357-015-9840-7
Bizon JL, Lee HJ, Gallagher M (2004) Neurogenesis in a rat model of age-related cognitive decline. Aging Cell 3:227–234. https://doi.org/10.1111/j.1474-9728.2004.00099.x
CAS
Article
PubMed
Google Scholar
Bond AM, Ming G-L, Song H (2015) Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17:385–395. https://doi.org/10.1016/j.stem.2015.09.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Bouchard J, Villeda SA (2015) Aging and brain rejuvenation as systemic events. J Neurochem 132:5–19
CAS
Article
PubMed
Google Scholar
Brack AS, Conboy MJ, Roy S et al (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810. https://doi.org/10.1126/science.1144090
CAS
Article
PubMed
Google Scholar
Bruunsgaard H (2006) The clinical impact of systemic low-level inflammation in elderly populations. With special reference to cardiovascular disease, dementia and mortality. Dan Med Bull 53:285–309
PubMed
Google Scholar
Buckwalter MS, Yamane M, Coleman BS et al (2006) Chronically increased transforming growth factor-beta1 strongly inhibits hippocampal neurogenesis in aged mice. Am J Pathol 169:154–164. https://doi.org/10.2353/ajpath.2006.051272
CAS
Article
PubMed
PubMed Central
Google Scholar
Castellano JM, Kirby ED, Wyss-Coray T (2015) Blood-borne revitalization of the aged brain. JAMA Neurol 72:1191–1194. https://doi.org/10.1001/jamaneurol.2015.1616
Article
PubMed
PubMed Central
Google Scholar
Castellano JM, Mosher KI, Abbey RJ et al (2017) Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 544:488–492. https://doi.org/10.1038/nature22067
CAS
Article
PubMed
PubMed Central
Google Scholar
Chapouton P, Jagasia R, Bally-Cuif L (2007) Adult neurogenesis in non-mammalian vertebrates. BioEssays 29:745–757
CAS
Article
PubMed
Google Scholar
Christian KM, Song H, Ming G (2014) Functions and dysfunctions of adult hippocampal neurogenesis. Annu Rev Neurosci 37:243–262. https://doi.org/10.1146/annurev-neuro-071013-014134
CAS
Article
PubMed
PubMed Central
Google Scholar
Clelland CD, Choi M, Romberg C et al (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325:210–213. https://doi.org/10.1126/science.1173215
CAS
Article
PubMed
PubMed Central
Google Scholar
Conboy IM, Conboy MJ, Wagers AJ et al (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764. https://doi.org/10.1038/nature03260
CAS
Article
PubMed
Google Scholar
Deng W, Saxe MD, Gallina IS, Gage FH (2009) Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci 29:13532–13542. https://doi.org/10.1523/JNEUROSCI.3362-09.2009
CAS
Article
PubMed
PubMed Central
Google Scholar
Dorshkind K, Montecino-Rodriguez E, Signer RAJ (2009) The ageing immune system: is it ever too old to become young again? Nat Rev Immunol 9:57–62. https://doi.org/10.1038/nri2471
CAS
Article
PubMed
Google Scholar
Drapeau E, Mayo W, Aurousseau C et al (2003) Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci U S A 100:14385–14390. https://doi.org/10.1073/pnas.2334169100
CAS
Article
PubMed
PubMed Central
Google Scholar
Effros RB (2007) Role of T lymphocyte replicative senescence in vaccine efficacy. Vaccine 25:599–604
CAS
Article
PubMed
Google Scholar
Egerman MA, Cadena SM, Gilbert JA et al (2015) GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab 22:164–174. https://doi.org/10.1016/j.cmet.2015.05.010
CAS
Article
PubMed
PubMed Central
Google Scholar
Enwere E (2004) Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci 24:8354–8365. https://doi.org/10.1523/JNEUROSCI.2751-04.2004
CAS
Article
PubMed
Google Scholar
Erickson MA, Morofuji Y, Owen JB, Banks WA (2014) Rapid transport of CCL11 across the blood-brain barrier: regional variation and importance of blood cells. J Pharmacol Exp Ther 349:497–507. https://doi.org/10.1124/jpet.114.213074
Article
PubMed
PubMed Central
Google Scholar
Fuentealba LC, Obernier K, Alvarez-Buylla A (2012) Adult neural stem cells bridge their niche. Cell Stem Cell 10:698–708. https://doi.org/10.1016/j.stem.2012.05.012
CAS
Article
PubMed
PubMed Central
Google Scholar
Hinken AC, Powers JM, Luo G et al (2016) Lack of evidence for GDF11 as a rejuvenator of aged skeletal muscle satellite cells. Aging Cell 15:582–584. https://doi.org/10.1111/acel.12475
CAS
Article
PubMed
PubMed Central
Google Scholar
Huang M-C, Liao J-J, Bonasera S et al (2008) Nuclear factor-kappaB-dependent reversal of aging-induced alterations in T cell cytokines. FASEB J 22:2142–2150. https://doi.org/10.1096/fj.07-103721
CAS
Article
PubMed
Google Scholar
Katsimpardi L, Litterman NK, Schein PA et al (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344:630–634. https://doi.org/10.1126/science.1251141
CAS
Article
PubMed
PubMed Central
Google Scholar
Kempermann G, Gast D, Gage FH (2002) Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann Neurol 52:135–143. https://doi.org/10.1002/ana.10262
Article
PubMed
Google Scholar
Kodali M, Parihar VK, Hattiangady B et al (2015) Resveratrol prevents age-related memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature, and reduced glial activation. Sci Rep 5:8075. https://doi.org/10.1038/srep08075
Article
PubMed
PubMed Central
Google Scholar
Lee SW, Haditsch U, Cord BJ et al (2013) Absence of CCL2 is sufficient to restore hippocampal neurogenesis following cranial irradiation. Brain Behav Immun 30:33–44
CAS
Article
PubMed
Google Scholar
Lehtinen MK, Bjornsson CS, Dymecki SM et al (2013) The choroid plexus and cerebrospinal fluid: emerging roles in development, disease, and therapy. J Neurosci 33:17553–17559. https://doi.org/10.1523/JNEUROSCI.3258-13.2013
CAS
Article
PubMed
PubMed Central
Google Scholar
Leiter O, Kempermann G, Walker TL (2016) A common language: how neuroimmunological cross talk regulates adult hippocampal neurogenesis. Stem Cells Int 2016:1681590. https://doi.org/10.1155/2016/1681590
Article
PubMed
PubMed Central
Google Scholar
Loffredo FS, Steinhauser ML, Jay SM et al (2013) Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153:828–839. https://doi.org/10.1016/j.cell.2013.04.015
CAS
Article
PubMed
PubMed Central
Google Scholar
Lugert S, Basak O, Knuckles P et al (2010) Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 6:445–456. https://doi.org/10.1016/j.stem.2010.03.017
CAS
Article
PubMed
Google Scholar
Mátrai Z, Németh J, Miklós K et al (2009) Serum beta2-microglobulin measured by immunonephelometry: expression patterns and reference intervals in healthy adults. Clin Chem Lab Med 47:585–589. https://doi.org/10.1515/CCLM.2009.137
Article
PubMed
Google Scholar
Merrill DA, Karim R, Darraq M et al (2003) Hippocampal cell genesis does not correlate with spatial learning ability in aged rats. J Comp Neurol 459:201–207. https://doi.org/10.1002/cne.10616
Article
PubMed
Google Scholar
Möhle L, Mattei D, Heimesaat MM et al (2016) Ly6Chi monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep 15:1945–1956. https://doi.org/10.1016/j.celrep.2016.04.074
Article
PubMed
Google Scholar
Molofsky AV, Slutsky SG, Joseph NM et al (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452. https://doi.org/10.1038/nature05091
CAS
Article
PubMed
PubMed Central
Google Scholar
Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765. https://doi.org/10.1126/science.1088417
CAS
Article
PubMed
Google Scholar
Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K (2013) Causes, consequences, and reversal of immune system aging. J Clin Invest 123:958–965. https://doi.org/10.1172/JCI16096
Nottebohm F (2004) The road we travelled: discovery, choreography, and significance of brain replaceable neurons. Ann N Y Acad Sci 1016:628–658. https://doi.org/10.1196/annals.1298.027
Penz OK, Fuzik J, Kurek AB et al (2015) Protracted brain development in a rodent model of extreme longevity. Sci Rep 5:11592. https://doi.org/10.1038/srep11592
CAS
Article
PubMed
PubMed Central
Google Scholar
Rebo J, Mehdipour M, Gathwala R et al (2016) A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat Commun 7:13363. https://doi.org/10.1038/ncomms13363
CAS
Article
PubMed
PubMed Central
Google Scholar
Ron-Harel N, Schwartz M (2009) Immune senescence and brain aging: can rejuvenation of immunity reverse memory loss? Trends Neurosci 32:367–375. https://doi.org/10.1016/j.tins.2009.03.003
CAS
Article
PubMed
Google Scholar
Ruckh JM, Zhao JW, Shadrach JL et al (2012) Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10:96–103. https://doi.org/10.1016/j.stem.2011.11.019
CAS
Article
PubMed
PubMed Central
Google Scholar
Sahay A, Wilson DA, Hen R (2011) Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron 70:582–588
CAS
Article
PubMed
PubMed Central
Google Scholar
Salpeter SJ, Khalaileh A, Weinberg-Corem N et al (2013) Systemic regulation of the age-related decline of pancreatic β-cell replication. Diabetes 62:2843–2848. https://doi.org/10.2337/db13-0160
CAS
Article
PubMed
PubMed Central
Google Scholar
Seib DRM, Corsini NS, Ellwanger K et al (2013) Loss of dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell 12:204–214. https://doi.org/10.1016/j.stem.2012.11.010
CAS
Article
PubMed
Google Scholar
Shahaduzzaman M, Golden JE, Green S et al (2013) A single administration of human umbilical cord blood T cells produces long-lasting effects in the aging hippocampus. Age (Omaha) 35:2071–2087. https://doi.org/10.1007/s11357-012-9496-5
CAS
Article
Google Scholar
Shaw AC, Joshi S, Greenwood H et al (2010) Aging of the innate immune system. Curr Opin Immunol 22:507–513
CAS
Article
PubMed
PubMed Central
Google Scholar
Shetty AK, Hattiangady B, Shetty GA (2005) Stem/progenitor cell proliferation factors FGF-2, IGF-1, and VEGF exhibit early decline during the course of aging in the hippocampus: role of astrocytes. Glia 51:173–186. https://doi.org/10.1002/glia.20187
Article
PubMed
Google Scholar
Shurin GV, Yurkovetsky ZR, Chatta GS et al (2007) Dynamic alteration of soluble serum biomarkers in healthy aging. Cytokine 39:123–129. https://doi.org/10.1016/j.cyto.2007.06.006
CAS
Article
PubMed
Google Scholar
Silva-Vargas V, Maldonado-Soto AR, Mizrak D et al (2016) Age-dependent niche signals from the choroid plexus regulate adult neural stem cells. Cell Stem Cell 19:643–652. https://doi.org/10.1016/j.stem.2016.06.013
CAS
Article
PubMed
Google Scholar
Sinha M, Jang YC, Oh J et al (2014) Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344:649–652. https://doi.org/10.1126/science.1251152
CAS
Article
PubMed
PubMed Central
Google Scholar
Smith LK, He Y, Park J-S et al (2015) β2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat Med 21:932–937. https://doi.org/10.1038/nm.3898
CAS
Article
PubMed
PubMed Central
Google Scholar
Snyder-Mackler N, Somel M, Tung J (2014) Shared signatures of social stress and aging in peripheral blood mononuclear cell gene expression profiles. Aging Cell 13:954–957. https://doi.org/10.1111/acel.12239
CAS
Article
PubMed
PubMed Central
Google Scholar
Targowski T, Jahnz-Rózyk K, Plusa T, Glodzinska-Wyszogrodzka E (2005) Influence of age and gender on serum eotaxin concentration in healthy and allergic people. J Investig Allergol Clin Immunol 15:277–282
CAS
PubMed
Google Scholar
Tsai C-Y, Tsai C-Y, Arnold SJ, Huang G-J (2015) Ablation of hippocampal neurogenesis in mice impairs the response to stress during the dark cycle. Nat Commun 6:8373. https://doi.org/10.1038/ncomms9373
CAS
Article
PubMed
PubMed Central
Google Scholar
Valiathan R, Ashman M, Asthana D (2016) Effects of ageing on the immune system: infants to elderly. Scand J Immunol 83:255–266. https://doi.org/10.1111/sji.12413
CAS
Article
PubMed
Google Scholar
Valley MT, Mullen TR, Schultz LC et al (2009) Ablation of mouse adult neurogenesis alters olfactory bulb structure and olfactory fear conditioning. Front Neurosci. https://doi.org/10.3389/neuro.22.003.2009
van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25:8680–8685. https://doi.org/10.1523/JNEUROSCI.1731-05.2005
Article
PubMed
PubMed Central
Google Scholar
Villeda SA, Luo J, Mosher KI et al (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477:90–94. https://doi.org/10.1038/nature10357
CAS
Article
PubMed
PubMed Central
Google Scholar
Villeda SA, Plambeck KE, Middeldorp J et al (2014) Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med 20:659–663. https://doi.org/10.1038/nm.3569
CAS
Article
PubMed
PubMed Central
Google Scholar
Wahlestedt M, Pronk CJ, Bryder D (2015) Concise review: hematopoietic stem cell aging and the prospects for rejuvenation. Stem Cells Transl Med 4:186–194. https://doi.org/10.5966/sctm.2014-0132
CAS
Article
PubMed
Google Scholar
Wolf SA, Steiner B, Akpinarli A et al (2009) CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J Immunol 182:3979–3984. https://doi.org/10.4049/jimmunol.0801218
CAS
Article
PubMed
Google Scholar
Yousef H, Morgenthaler A, Schlesinger C et al (2015a) Age-associated increase in BMP signaling inhibits hippocampal neurogenesis. Stem Cells 33:1577–1588. https://doi.org/10.1002/stem.1943
CAS
Article
PubMed
PubMed Central
Google Scholar
Yousef H, Conboy MJ, Morgenthaler A (2015b) Systemic attenuation of the TGF-β pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal. Neurobiol Dis 74:1–8. https://doi.org/10.1016/j.nbd.2014.11.016
Article
Google Scholar
Zhang C-L, Zou Y, He W et al (2008) A role for adult TLX-positive neural stem cells in learning and behaviour. Nature 451:1004–1007. https://doi.org/10.1038/nature06562
CAS
Article
PubMed
Google Scholar
Ziv Y, Ron N, Butovsky O et al (2006) Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9:268–275. https://doi.org/10.1038/nn1629
CAS
Article
PubMed
Google Scholar
Zupanc GKH, Sirbulescu RF (2013) Teleost fish as a model system to study successful regeneration of the central nervous system. Curr Top Microbiol Immunol 367:193–233. https://doi.org/10.1007/82-2012-297
CAS
PubMed
Google Scholar