Skip to main content

Advertisement

Log in

Analysis of gene expression and functional characterization of XPR1: a pathogenic gene for primary familial brain calcification

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Primary familial brain calcification (PFBC) is a neuropsychiatric disorder characterized by bilateral cerebral calcification with diverse neurologic or psychiatric symptoms. Recently, XPR1 variation has accounted for PFBC as another new causative gene. However, little is known about the distribution and basic function of XPR1 and its interaction with the other three pathogenic genes for PFBC (SLC20A2, PDGFRB and PDGFB). The aim of this study was to further clarify the role of XPR1 in PFBC brain pathology. As a result, gene expression profiles showed that XPR1 mRNA was widely expressed throughout the mouse brain. Cerebellum and striatum, most commonly affected in PFBC, contained a higher level of XPR1 protein than other brain regions. Additionally, XPR1 deficiency seriously affected Pi efflux and XPR1 mutations seemed to have an effect through haploinsufficiency mechanism. The immunoprecipitation and immunohistochemical studies demonstrated that XPR1 could interact with PDGFRB and might form a complex on the cell membrane. These results suggested that XPR1 played a fundamental role in the maintenance of cellular phosphate balance in the brain. This provided us with a novel perspective on understanding the pathophysiology of PFBC. The expression networks and interaction with the known pathogenic genes could shed new light on additional candidate genes for PFBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anheim M, Lopez-Sanchez U, Giovannini D, Richard AC, Touhami J, N’Guyen L, Rudolf G, Thibault-Stoll A, Frebourg T, Hannequin D, Campion D, Battini JL, Sitbon M, Nicolas G (2016) XPR1 mutations are a rare cause of primary familial brain calcification. J Neurol 263:1559–1564

    Article  CAS  PubMed  Google Scholar 

  • Arts FA, Velghe AI, Stevens M, Renauld JC, Essaghir A, Demoulin JB (2015) Idiopathic basal ganglia calcification-associated PDGFRB mutations impair the receptor signalling. J Cell Mol Med 19:239–248

    Article  CAS  PubMed  Google Scholar 

  • da Silva RJ, Pereira IC, Oliveira JR (2013) Analysis of gene expression pattern and neuroanatomical correlates for SLC20A2 (PiT-2) shows a molecular network with potential impact in idiopathic basal ganglia calcification ("Fahr’s disease"). J Mol Neurosci 50:280–283

    Article  CAS  PubMed  Google Scholar 

  • Giovannini D, Touhami J, Charnet P, Sitbon M, Battini JL (2013) Inorganic phosphate export by the retrovirus receptor XPR1 in metazoans. Cell Rep 3:1866–1873

    Article  CAS  PubMed  Google Scholar 

  • Hsu SC, Sears RL, Lemos RR, Quintans B, Huang A, Spiteri E, Nevarez L, Mamah C, Zatz M, Pierce KD, Fullerton JM, Adair JC, Berner JE, Bower M, Brodaty H, Carmona O, Dobricic V, Fogel BL, Garcia-Estevez D, Goldman J, Goudreau JL, Hopfer S, Jankovic M, Jauma S, Jen JC, Kirdlarp S, Klepper J, Kostic V, Lang AE, Linglart A, Maisenbacher MK, Manyam BV, Mazzoni P, Miedzybrodzka Z, Mitarnun W, Mitchell PB, Mueller J, Novakovic I, Paucar M, Paulson H, Simpson SA, Svenningsson P, Tuite P, Vitek J, Wetchaphanphesat S, Williams C, Yang M, Schofield PR, de Oliveira JR, Sobrido MJ, Geschwind DH, Coppola G (2013) Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification. Neurogenetics 14:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inden M, Iriyama M, Zennami M, Sekine S, Hara A, Yamada M, Hozumi I (2016) The type III transporters (PiT-1 and PiT-2) are the major sodium-dependent phosphate transporters in the mice and human brains. Brain Res 1637:128–136

    Article  CAS  PubMed  Google Scholar 

  • Keller A, Westenberger A, Sobrido MJ, Garcia-Murias M, Domingo A, Sears RL, Lemos RR, Ordonez-Ugalde A, Nicolas G, da Cunha JE, Rushing EJ, Hugelshofer M, Wurnig MC, Kaech A, Reimann R, Lohmann K, Dobricic V, Carracedo A, Petrovic I, Miyasaki JM, Abakumova I, Mae MA, Raschperger E, Zatz M, Zschiedrich K, Klepper J, Spiteri E, Prieto JM, Navas I, Preuss M, Dering C, Jankovic M, Paucar M, Svenningsson P, Saliminejad K, Khorshid HR, Novakovic I, Aguzzi A, Boss A, Le Ber I, Defer G, Hannequin D, Kostic VS, Campion D, Geschwind DH, Coppola G, Betsholtz C, Klein C, Oliveira JR (2013) Mutations in the gene encoding PDGF-B cause brain calcifications in humans and mice. Nat Genet 45:1077–1082

    Article  CAS  PubMed  Google Scholar 

  • Larsen FT, Jensen N, Autzen JK, Kongsfelt IB, Pedersen L (2017) Primary brain calcification causal PiT2 transport-knockout variants can exert dominant negative effects on wild-type PiT2 transport function in mammalian cells. J Mol Neurosci 61:215–220

    Article  CAS  PubMed  Google Scholar 

  • Legati A, Giovannini D, Nicolas G, Lopez-Sanchez U, Quintans B, Oliveira JR, Sears RL, Ramos EM, Spiteri E, Sobrido MJ, Carracedo A, Castro-Fernandez C, Cubizolle S, Fogel BL, Goizet C, Jen JC, Kirdlarp S, Lang AE, Miedzybrodzka Z, Mitarnun W, Paucar M, Paulson H, Pariente J, Richard AC, Salins NS, Simpson SA, Striano P, Svenningsson P, Tison F, Unni VK, Vanakker O, Wessels MW, Wetchaphanphesat S, Yang M, Boller F, Campion D, Hannequin D, Sitbon M, Geschwind DH, Battini JL, Coppola G (2015) Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export. Nat Genet 47:579–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemos RR, Ramos EM, Legati A, Nicolas G, Jenkinson EM, Livingston JH, Crow YJ, Campion D, Coppola G, Oliveira JR (2015) Update and mutational analysis of SLC20A2: a major cause of primary familial brain calcification. Hum Mutat 36:489–495

    Article  CAS  PubMed  Google Scholar 

  • Miklossy J, Mackenzie IR, Dorovini-Zis K, Calne DB, Wszolek ZK, Klegeris A, McGeer PL (2005) Severe vascular disturbance in a case of familial brain calcinosis. Acta Neuropathol 109:643–653

    Article  PubMed  Google Scholar 

  • Nicolas G, Charbonnier C, de Lemos RR, Richard A-C, Guillin O, Wallon D, Legati A, Geschwind D, Coppola G, Frebourg T, Campion D, de Oliveira JRM, Hannequin D (2015) Brain calcification process and phenotypes according to age and sex: Lessons from SLC20A2,PDGFB, and PDGFRBmutation carriers. Am J Med Genet B Neuropsychiatr Genet 168:586–594

    Article  CAS  PubMed  Google Scholar 

  • Nicolas G, Pottier C, Maltete D, Coutant S, Rovelet-Lecrux A, Legallic S, Rousseau S, Vaschalde Y, Guyant-Marechal L, Augustin J, Martinaud O, Defebvre L, Krystkowiak P, Pariente J, Clanet M, Labauge P, Ayrignac X, Lefaucheur R, Le Ber I, Frebourg T, Hannequin D, Campion D (2013) Mutation of the PDGFRB gene as a cause of idiopathic basal ganglia calcification. Neurology 80:181–187

    Article  CAS  PubMed  Google Scholar 

  • Vanlandewijck M, Lebouvier T, Andaloussi Mae M, Nahar K, Hornemann S, Kenkel D, Cunha SI, Lennartsson J, Boss A, Heldin CH, Keller A, Betsholtz C (2015) Functional characterization of germline mutations in PDGFB and PDGFRB in primary familial brain calcification. PLoS ONE 10:e0143407

    Article  PubMed  PubMed Central  Google Scholar 

  • Villa-Bellosta RRS, Sorribas V, Stange G, Levi M, Murer H, Biber J, Forster IC (2009) The Na+−pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary pi. Am J Physiol Renal Physiol 286:691–699

    Article  Google Scholar 

  • Wang C, Li Y, Shi L, Ren J, Patti M, Wang T, de Oliveira JR, Sobrido MJ, Quintans B, Baquero M, Cui X, Zhang XY, Wang L, Xu H, Wang J, Yao J, Dai X, Liu J, Zhang L, Ma H, Gao Y, Ma X, Feng S, Liu M, Wang QK, Forster IC, Zhang X, Liu JY (2012) Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat Genet 44:254–256

    Article  CAS  PubMed  Google Scholar 

  • Wege S, Poirier Y (2014) Expression of the mammalian Xenotropic Polytropic virus receptor 1 (XPR1) in tobacco leaves leads to phosphate export. FEBS Lett 588:482–489

    Article  CAS  PubMed  Google Scholar 

  • Westenberger A, Klein C (2014) The genetics of primary familial brain calcifications. Curr Neurol Neurosci Rep 14:490

    Article  PubMed  Google Scholar 

  • Yamada M, Tanaka M, Takagi M, Kobayashi S, Taguchi Y, Takashima S, Tanaka K, Touge T, Hatsuta H, Murayama S, Hayashi Y, Kaneko M, Ishiura H, Mitsui J, Atsuta N, Sobue G, Shimozawa N, Inuzuka T, Tsuji S, Hozumi I (2014) Evaluation of SLC20A2 mutations that cause idiopathic basal ganglia calcification in Japan. Neurology 82:705–712

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant 81322017, 81371261, and U1505222 from the National Natural Science Foundation of China, grant NCET-13-0736 from Program for New Century Excellent Talents in University, National Key Clinical Specialty Discipline Construction Program and Key Clinical Specialty Discipline Construction Program of Fujian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Jin Chen.

Ethics declarations

Disclosure of conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants performed by any of the authors. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution.

Electronic supplementary material

ESM 1

(DOC 2246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, XP., Zhao, M., Wang, C. et al. Analysis of gene expression and functional characterization of XPR1: a pathogenic gene for primary familial brain calcification. Cell Tissue Res 370, 267–273 (2017). https://doi.org/10.1007/s00441-017-2663-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2663-3

Keywords

Navigation