Skip to main content
Log in

XPR1 mutations are a rare cause of primary familial brain calcification

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Mutations in XPR1, a gene encoding an inorganic phosphate exporter, have recently been identified in patients with primary familial brain calcification (PFBC). Using Sanger sequencing, we screened XPR1 in 18 unrelated patients with PFBC and no SLC20A2, PDGFB, or PDGFRB mutation. XPR1 variants were tested in an in vitro physiological complementation assay and patient blood cells were assessed ex vivo for phosphate export. We identified a novel c.260T > C, p.(Leu87Pro) XPR1 variant in a 41-year-old man complaining of micrographia and dysarthria and demonstrating mild parkinsonism, cerebellar ataxia and executive dysfunction. Brain 123I-Ioflupane scintigraphy showed marked dopaminergic neuron loss. Peripheral blood cells from the patient exhibited decreased phosphate export. XPR1 in which we introduced the mutation was not detectable at the cell surface and did not lead to phosphate export. These results confirm that loss of XPR1-mediated phosphate export function causes PFBC, occurring in less than 8 % of cases negative for the other genes, and may be responsible for parkinsonism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nicolas G, Pottier C, Charbonnier C, Guyant-Marechal L, Le Ber I, Pariente J, Labauge P, Ayrignac X, Defebvre L, Maltete D, Martinaud O, Lefaucheur R, Guillin O, Wallon D, Chaumette B, Rondepierre P, Derache N, Fromager G, Schaeffer S, Krystkowiak P, Verny C, Jurici S, Sauvee M, Verin M, Lebouvier T, Rouaud O, Thauvin-Robinet C, Rousseau S, Rovelet-Lecrux A, Frebourg T, Campion D, Hannequin D (2013) Phenotypic spectrum of probable and genetically-confirmed idiopathic basal ganglia calcification. Brain 136(Pt 11):3395–3407

    Article  PubMed  Google Scholar 

  2. Sobrido MJ, Hopfer S, Geschwind DH (1993–2004) Familial Idiopathic Basal Ganglia Calcification. In: Pagon RA, Bird TD, Dolan CR, et al (eds) GeneReviews™ [Internet] Seattle (WA): University of Washington, Seattle

  3. Nicolas G, Charbonnier C, de Lemos RR, Richard AC, Guillin O, Wallon D, Legati A, Geschwind D, Coppola G, Frebourg T, Campion D, de Oliveira JR, Hannequin D (2015) Brain calcification process and phenotypes according to age and sex: lessons from SLC20A2, PDGFB, and PDGFRB mutation carriers. Am J Med Genet B Neuropsychiatr Genet 168(7):586–594

    Article  CAS  PubMed  Google Scholar 

  4. Wang C, Li Y, Shi L, Ren J, Patti M, Wang T, de Oliveira JR, Sobrido MJ, Quintans B, Baquero M, Cui X, Zhang XY, Wang L, Xu H, Wang J, Yao J, Dai X, Liu J, Zhang L, Ma H, Gao Y, Ma X, Feng S, Liu M, Wang QK, Forster IC, Zhang X, Liu JY (2012) Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat Genet 44(3):254–256

    Article  CAS  PubMed  Google Scholar 

  5. Nicolas G, Pottier C, Maltete D, Coutant S, Rovelet-Lecrux A, Legallic S, Rousseau S, Vaschalde Y, Guyant-Marechal L, Augustin J, Martinaud O, Defebvre L, Krystkowiak P, Pariente J, Clanet M, Labauge P, Ayrignac X, Lefaucheur R, Le Ber I, Frebourg T, Hannequin D, Campion D (2013) Mutation of the PDGFRB gene as a cause of idiopathic basal ganglia calcification. Neurology 80(2):181–187

    Article  CAS  PubMed  Google Scholar 

  6. Keller A, Westenberger A, Sobrido MJ, Garcia-Murias M, Domingo A, Sears RL, Lemos RR, Ordonez-Ugalde A, Nicolas G, da Cunha JE, Rushing EJ, Hugelshofer M, Wurnig MC, Kaech A, Reimann R, Lohmann K, Dobricic V, Carracedo A, Petrovic I, Miyasaki JM, Abakumova I, Mae MA, Raschperger E, Zatz M, Zschiedrich K, Klepper J, Spiteri E, Prieto JM, Navas I, Preuss M, Dering C, Jankovic M, Paucar M, Svenningsson P, Saliminejad K, Khorshid HR, Novakovic I, Aguzzi A, Boss A, Le Ber I, Defer G, Hannequin D, Kostic VS, Campion D, Geschwind DH, Coppola G, Betsholtz C, Klein C, Oliveira JR (2013) Mutations in the gene encoding PDGF-B cause brain calcifications in humans and mice. Nat Genet 45(9):1077–1082

    Article  CAS  PubMed  Google Scholar 

  7. Legati A, Giovannini D, Nicolas G, Lopez-Sanchez U, Quintans B, Oliveira JR, Sears RL, Ramos EM, Spiteri E, Sobrido MJ, Carracedo A, Castro-Fernandez C, Cubizolle S, Fogel BL, Goizet C, Jen JC, Kirdlarp S, Lang AE, Miedzybrodzka Z, Mitarnun W, Paucar M, Paulson H, Pariente J, Richard AC, Salins NS, Simpson SA, Striano P, Svenningsson P, Tison F, Unni VK, Vanakker O, Wessels MW, Wetchaphanphesat S, Yang M, Boller F, Campion D, Hannequin D, Sitbon M, Geschwind DH, Battini JL, Coppola G (2015) Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export. Nat Genet 47(6):579–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Battini JL, Rasko JE, Miller AD (1999) A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: possible role in G protein-coupled signal transduction. Proc Natl Acad Sci USA 96(4):1385–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kavanaugh MP, Miller DG, Zhang W, Law W, Kozak SL, Kabat D, Miller AD (1994) Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc Natl Acad Sci USA 91(15):7071–7075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Giovannini D, Touhami J, Charnet P, Sitbon M, Battini JL (2013) Inorganic phosphate export by the retrovirus receptor XPR1 in metazoans. Cell Rep 3(6):1866–1873

    Article  CAS  PubMed  Google Scholar 

  11. Hsu SC, Sears RL, Lemos RR, Quintans B, Huang A, Spiteri E, Nevarez L, Mamah C, Zatz M, Pierce KD, Fullerton JM, Adair JC, Berner JE, Bower M, Brodaty H, Carmona O, Dobricic V, Fogel BL, Garcia-Estevez D, Goldman J, Goudreau JL, Hopfer S, Jankovic M, Jauma S, Jen JC, Kirdlarp S, Klepper J, Kostic V, Lang AE, Linglart A, Maisenbacher MK, Manyam BV, Mazzoni P, Miedzybrodzka Z, Mitarnun W, Mitchell PB, Mueller J, Novakovic I, Paucar M, Paulson H, Simpson SA, Svenningsson P, Tuite P, Vitek J, Wetchaphanphesat S, Williams C, Yang M, Schofield PR, de Oliveira JR, Sobrido MJ, Geschwind DH, Coppola G (2013) Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification. Neurogenetics 14(1):11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deng H, Zheng W, Jankovic J (2015) Genetics and molecular biology of brain calcification. Ageing Res Rev 22:20–38

    Article  CAS  PubMed  Google Scholar 

  13. Manel N, Kim FJ, Kinet S, Taylor N, Sitbon M, Battini JL (2003) The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Cell 115(4):449–459

    Article  CAS  PubMed  Google Scholar 

  14. Miller AD, Rosman GJ (1989) Improved retroviral vectors for gene transfer and expression. Biotechniques. 7(9):980–982 4–6, 9–90

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Petit V, Massonnet G, Maciorowski Z, Touhami J, Thuleau A, Nemati F, Laval J, Chateau-Joubert S, Servely JL, Vallerand D, Fontaine JJ, Taylor N, Battini JL, Sitbon M, Decaudin D (2013) Optimization of tumor xenograft dissociation for the profiling of cell surface markers and nutrient transporters. Lab Invest 93(5):611–621

    Article  CAS  PubMed  Google Scholar 

  16. Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, Giunti P, Globas C, Infante J, Kang JS, Kremer B, Mariotti C, Melegh B, Pandolfo M, Rakowicz M, Ribai P, Rola R, Schols L, Szymanski S, van de Warrenburg BP, Durr A, Klockgether T, Fancellu R (2006) Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66(11):1717–1720

    Article  CAS  PubMed  Google Scholar 

  17. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, Committee ALQA (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424

    Article  PubMed  PubMed Central  Google Scholar 

  18. Manyam BV, Walters AS, Narla KR (2001) Bilateral striopallidodentate calcinosis: clinical characteristics of patients seen in a registry. Mov Disord 16(2):258–264

    Article  CAS  PubMed  Google Scholar 

  19. Vaughan AE, Mendoza R, Aranda R, Battini JL, Miller AD (2012) Xpr1 is an atypical G-protein-coupled receptor that mediates xenotropic and polytropic murine retrovirus neurotoxicity. J Virol 86(3):1661–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jensen N, Schroder HD, Hejbol EK, Fuchtbauer EM, de Oliveira JR, Pedersen L (2013) Loss of function of slc20a2 associated with familial idiopathic Basal Ganglia calcification in humans causes brain calcifications in mice. J Mol Neurosci 51(3):994–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wallingford MC, Chia J, Leaf EM, Borgeia S, Chavkin NW, Sawangmake C, Marro K, Cox TC, Speer MY, Giachelli CM (2016) SLC20A2 deficiency in mice leads to elevated phosphate levels in cerbrospinal fluid and glymphatic pathway-associated arteriolar calcification, and recapitulates human idiopathic basal ganglia calcification. Brain Pathol. doi:10.1111/bpa.12362

    PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all collaborators who sent blood samples and medical charts, and all members of our labs for constant support and helpful discussions. This work was supported by grants from the Fondation pour la Recherche Médicale (FRM) and ANR Blanc (to M.S.); Ligue Nationale contre le Cancer (Comité de l’Hérault) and Agence Nationale de la Recherche JCJC (to J.-L.B.); U.L.-S. was supported by Labex EpiGenMed (ANR-10-LABX-12-01) and Secretaría de Ciencia, Tecnología e Innovación de la Ciudad de México (CM-102/15 SECITI 030/2016) fellowships; D.G. was supported by FRM, Institut National du Cancer (INCa), and Labex GR-Ex (ANR-11-LABX-0051) fellowships; Labex is funded by the program ‘Investissements d’Avenir’ of the French National Research Agency. J.-L.B. and M.S. are supported by INSERM; G.N., D.C., T.F., and D.H. are supported by Inserm, the University Hospital of Rouen and the French CNR-MAJ.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Luc Battini, Marc Sitbon or Gaël Nicolas.

Ethics declarations

Conflicts of interest

J-L.B. and M.S. are inventors on provisional a patent describing the use of ligands, including XRBD, for the analysis of human cells (PCT/EP2010/050139); M.S. is a co-founder of METAFORA-biosystems, a start-up company that focuses on metabolite transporters under physiological and pathological conditions.

Additional information

M. Anheim, U. López-Sánchez contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

415_2016_8166_MOESM1_ESM.jpg

Supplementary material 1 Figure. a) Uptake of inorganic 33P (Pi) assay performed in HEK293T cells transfected with siRNA directed against either luciferase (siLUC) or XPR1 (siXPR1), or a combination of siXPR1 with an expression vector encoding HA-tagged WT XPR1 or the L87P mutant human XPR1. Results are shown as mean ± s.e.m. in a representative experiment (n = 3); b) Cell surface detection of PiT1 and PiT2 in HEK293T transfected cells as in (a). Specific binding with KoRBD, the PiT1 ligand derived from the receptor-binding domain of KoRV-MLV Env, or with ASU, the PiT2 ligand derived from the Amphotropic-MLV Env (grey histograms, upper and lower panels, respectively). Grey histograms represent the non-specific staining with the secondary IgG antibody. Numbers indicate the specific mean fluorescence intensity of a representative experiment (n = 3). (JPEG 295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anheim, M., López-Sánchez, U., Giovannini, D. et al. XPR1 mutations are a rare cause of primary familial brain calcification. J Neurol 263, 1559–1564 (2016). https://doi.org/10.1007/s00415-016-8166-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-016-8166-4

Keywords

Navigation