Skip to main content
Log in

Colonic mesenchyme differentiates into smooth muscle before its colonization by vagal enteric neural crest-derived cells in the chick embryo

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

During development, the gastrointestinal (GI) tract arises from a primary tube composed of mesoderm and endoderm. The mesoderm gives rise to the digestive mesenchyme, which in turn differentiates into multiple tissues, namely the submucosa, the interstitial cells of Cajal and the smooth muscle cells (SMCs). Concomitant with these early patterning events, the primitive GI tract is colonized by vagal enteric neural crest-derived cells (vENCDCs), a population of cells that gives rise to the enteric nervous system, the intrinsic innervation of the GI tract. Reciprocal neuro-mesenchymal interactions are essential for the coordinated development of GI musculature. The aim of this study is to examine and compare the kinetics of mesenchymal cell differentiation into SMCs along the anterior–posterior axis to the pattern of vENCDCs migration using whole-mount in situ hybridization and paraffin section immunofluorescence analyses on chick embryonic GI tracts from E4-Stage 23 to E7-Stages 30–31. We confirmed that gastric and pre-umbilical intestine mesenchyme differentiation into SMCs occurs after vENCDCs colonization. However, we found that colonic and post-umbilical intestine mesenchyme differentiation occurs before vENCDCs colonization. These findings suggest that regional-specific mechanisms are involved in the mesenchyme differentiation into SMCs along the GI anterior–posterior axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonucci A, Fronzoni L, Cogliandro L, Cogliandro RF, Caputo C, De Giorgio R, Pallotti F, Barbara G, Corinaldesi R, Stanghellini V (2008) Chronic intestinal pseudo-obstruction. World J Gastroenterol 14:2953–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boeckxstaens GE, Rumessen JJ, de Wit L, Tytgat GN, Vanderwinden JM (2002) Abnormal distribution of the interstitial cells of cajal in an adult patient with pseudo-obstruction and megaduodenum. Am J Gastroenterol 97:2120–2126

    Article  PubMed  Google Scholar 

  • Breau MA, Pietri T, Eder O, Blanche M, Brakebusch C, Fässler R, Thiery JP, Dufour S (2006) Lack of beta1 integrins in enteric neural crest cells leads to a Hirschsprung-like phenotype. Development 133:1725–1734

    Article  CAS  PubMed  Google Scholar 

  • Burns AJ, Le Douarin NM (1998) The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system. Development 125:4335–4347

    CAS  PubMed  Google Scholar 

  • Burns AJ, Champeval D, Le Douarin NM (2000) Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia. Dev Biol 219:30–43

    Article  CAS  PubMed  Google Scholar 

  • Chetaille P, Preuss C, Burkhard S, Côté JM, Houde C, Castilloux J, Piché J, Gosset N, Leclerc S, Wünnemann F, Thibeault M, Gagnon C, Galli A, Tuck E, Hickson GR, El Amine N, Boufaied I, Lemyre E, de Santa Barbara P, Faure S, Jonzon A, Cameron M, Dietz HC, Gallo-McFarlane E, Benson DW, Moreau C, Labuda D, Canada Consortium FORGE, Zhan SH, Shen Y, Jomphe M, Jones SJ, Bakkers J, Andelfinger G (2014) Mutations in SGOL1 cause a novel cohesinopathy affecting heart and gut rhythm. Nat Genet 46:1245–1249

    Article  CAS  PubMed  Google Scholar 

  • de Santa Barbara P, Roberts DJ (2002) Tail gut endoderm and gut/genitourinary/tail development: a new tissue-specific role for Hoxa13. Development 129:551–561

    PubMed  PubMed Central  Google Scholar 

  • de Santa Barbara P, van den Brink GR, Roberts DJ (2002) Molecular etiology of gut malformations and diseases. Am J Med Genet 115:221–230

    Article  PubMed  Google Scholar 

  • de Santa Barbara P, Williams J, Goldstein AM, Doyle AM, Nielsen C, Winfield S, Faure S, Roberts DJ (2005) Bone morphogenetic protein signaling pathway plays multiple roles during gastrointestinal tract development. Dev Dyn 234:312–322

    Article  PubMed  Google Scholar 

  • Fairman CL, Clagett-Dame M, Lennon VA, Epstein ML (1995) Appearance of neurons in the developing chick gut. Dev Dyn 204:192–201

    Article  CAS  PubMed  Google Scholar 

  • Faure S, de Santa Barbara P (2011) Molecular embryology of the foregut. J Pediatr Gastroenterol Nutr 52:S2–3

    Article  PubMed  PubMed Central  Google Scholar 

  • Faure S, Georges M, McKey J, Sagnol S, de Santa Barbara P (2013) Expression pattern of the homeotic gene Bapx1 during early chick gastrointestinal tract development. Gene Expr Patterns 13:287–292

    Article  CAS  PubMed  Google Scholar 

  • Faure S, McKey J, Sagnol S, de Santa Barbara P (2015) Enteric neural crest cells regulate vertebrate stomach patterning and differentiation. Development 142:331–342

    Article  CAS  PubMed  Google Scholar 

  • Fu M, Lui VC, Sham MH, Pachnis V, Tam PK (2004) Sonic hedgehog regulates the proliferation, differentiation, and migration of enteric neural crest cells in gut. J Cell Biol 166:673–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabella G (2002) Development of visceral smooth muscle. Results Probl Cell Differ 38:1–37

    Article  PubMed  Google Scholar 

  • Grapin-Botton A (2005) Antero-posterior patterning of the vertebrate digestive tract: 40 years after Nicole Le Douarin’s PhD thesis. Int J Dev Biol 49:335–347

    Article  CAS  PubMed  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morph 88:49–92

    Article  CAS  PubMed  Google Scholar 

  • Hao MM, Foong JP, Bornstein JC, Li ZL, Vanden Berghe P, Boesmans W (2016) Enteric nervous system assembly: functional integration within the developing gut. Dev Biol 417:168–181

    Article  CAS  PubMed  Google Scholar 

  • Heanue TA, Shepherd IT, Burns AJ (2016) Enteric nervous system development in avian and zebrafish models. Dev Biol 417:129–138

    Article  CAS  PubMed  Google Scholar 

  • Jayewickreme CD, Shivdasani RA (2015) Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1. Dev Biol 405:21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim BM, Buchner G, Miletich I, Sharpe PT, Shivdasani RA (2005) The stomach mesenchymal transcription factor Barx1 specifies gastric epithelial identity through inhibition of transient Wnt signaling. Dev Cell 8:611–622

    Article  CAS  PubMed  Google Scholar 

  • Le Douarin NM, Teillet MA (1973) The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol 30:31–48

    PubMed  Google Scholar 

  • Le Guen L, Notarnicola C, de Santa Barbara P (2009) Intermuscular tendons are essential for the development of vertebrate stomach. Development 136:791–801

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Guen L, Marchal S, Faure S, de Santa Barbara P (2015) Mesenchymal-epithelial interactions during digestive tract development and epithelial stem cell regeneration. Cell Mol Life Sci 72:3883–3896

    Article  PubMed  PubMed Central  Google Scholar 

  • McKey J, Martire D, de Santa Barbara P, Faure S (2016) LIX1 regulates YAP1 activity and controls the proliferation and differentiation of stomach mesenchymal progenitors. BMC Biol 14:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Moniot B, Biau S, Faure S, Nielsen CM, Berta P, Roberts DJ, de Santa Barbara P (2004) SOX9 specifies the pyloric sphincter epithelium through mesenchymal-epithelial signals. Development 131:3795–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Notarnicola C, Rouleau C, Le Guen L, Virsolvy A, Richard S, Faure S, De Santa Barbara P (2012) The RNA-binding protein RBPMS2 regulates development of gastrointestinal smooth muscle. Gastroenterology 143:687–697

    Article  CAS  PubMed  Google Scholar 

  • Olden T, Akhtar T, Beckman SA, Wallace KN (2008) Differentiation of the zebrafish enteric nervous system and intestinal smooth muscle. Genesis 46:484–498

    Article  PubMed  Google Scholar 

  • Pomeranz HD, Gershon MD (1990) Colonization of the avian hindgut by cells derived from the sacral neural crest. Dev Biol 137:378–394

    Article  CAS  PubMed  Google Scholar 

  • Raghavan S, Bitar KN (2014) The influence of extracellular matrix composition on the differentiation of neuronal subtypes in tissue engineered innervated intestinal smooth muscle sheets. Biomaterials 35:7429–7440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts DJ (2000) Molecular mechanisms of development of the gastrointestinal tract. Dev Dyn 219:109–120

    Article  CAS  PubMed  Google Scholar 

  • Roberts DJ, Smith DM, Goff DJ, Tabin CJ (1998) Epithelial-mesenchymal signaling during the regionalization of the chick gut. Development 125:2791–2801

    CAS  PubMed  Google Scholar 

  • Sagnol S, Marchal S, Yang Y, Allemand F, de Santa Barbara P (2016) Epithelial splicing regulatory protein 1 (ESRP1) is a new regulator of stomach smooth muscle development and plasticity. Dev Biol 414:207–218

    Article  CAS  PubMed  Google Scholar 

  • Sukegawa A, Narita T, Kameda T, Saitoh K, Nohno T, Iba H, Yasugi S, Fukuda K (2000) The concentric structure of the developing gut is regulated by Sonic hedgehog derived from endodermal epithelium. Development 127:1971–1980

    CAS  PubMed  Google Scholar 

  • Theodosiou NA, Tabin CJ (2003) Wnt signaling during development of the gastrointestinal tract. Dev Biol 259:258–271

    Article  CAS  PubMed  Google Scholar 

  • Tucker GC, Aoyama H, Lipinski M, Tursz T, Thiery JP (1984) Identical reactivity of monoclonal antibodies HNK-1 and NC-1: conservation in vertebrates on cells derived from the neural primordium and on some leukocytes. Cell Differ 14:223–230

    Article  CAS  PubMed  Google Scholar 

  • Wallace AS, Burns AJ (2005) Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res 319:367–382

    Article  PubMed  Google Scholar 

  • Yntema CL, Hammond WS (1954) The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryos. J Comp Neurol 101:515–541

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks the members of INSERM U1046.

Author contribution

AB, NC, PdSB and SF performed experiments. PdSB, NC and SF analysed results, contributed expertise and wrote the paper. PdSB and SF obtained funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Faure.

Ethics declarations

Funding

Research was supported by a Trampolin grant (N°15681) from the Association Française contre les Myopathies (AFM) to SF and grants from AFM (N°18766), Fondation ARC and the French Association for CIPO patients to PdSB.

Conflict of interest

No competing interests declared.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig 1

Differentiation of GI smooth muscle at E7.5. Whole-mount in situ hybridization analysis of SM22 expression. A faint level of SM22 transcripts was detected in the pylorus (white arrowhead). st stomach. (GIF 187 kb)

High resolution image (TIF 6739 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourret, A., Chauvet, N., de Santa Barbara, P. et al. Colonic mesenchyme differentiates into smooth muscle before its colonization by vagal enteric neural crest-derived cells in the chick embryo. Cell Tissue Res 368, 503–511 (2017). https://doi.org/10.1007/s00441-017-2577-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2577-0

Keywords

Navigation