Skip to main content

Advertisement

Log in

Downregulation of CITED2 contributes to TGFβ-mediated senescence of tendon-derived stem cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Tendon-derived stem cells (TDSCs) are multipotent adult stem cells with potential applications in tendon and tendon–bone junction repair. However, cellular characteristics change during in vitro passaging. Therefore, elucidation of the molecular and cellular mechanisms of tendon aging will be essential for the development of TDSC-based therapies. The aim of this study is to investigate the effect of CITED2, a nuclear regulator and transforming growth factor β2 (TGFβ2) on TDSC proliferation and senescence by comparing cells derived from Achilles tendon biopsies of young individuals (Y-TDSC) with those of older patients (O-TDSC). Our results showed that CITED2 mRNA and protein expression levels were significantly higher in Y-TDSCs than in O-TDSCs and O-TDSCs displayed decreased proliferation and increased senescence compared with Y-TDSCs. Furthermore, high levels of CITED2 protein expression in Y-TDSCs correlated with the downregulation of SP1 and p21 and the upregulation of MYC, potentially indicating the mechanism by which CITED2 upregulates TDSC proliferation. TGFβ2 was found to downregulate the expression of the CITED2 gene and knockdown of CITED2 abolished the effect of TGFβ2 on TDSC proliferation and senescence. Thus, the downregulation of CITED2 contributes to TGFβ-mediated senescence providing an insight into the molecular and cellular mechanisms that contribute to tendon aging and degeneration. Our findings may aid the development of cell-based therapies for tendon repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    Article  CAS  PubMed  Google Scholar 

  • Ahmad Z, Wardale J, Brooks R, Henson F, Noorani A, Rushton N (2012) Exploring the application of stem cells in tendon repair and regeneration. Arthroscopy 28:1018–1029

    Article  PubMed  Google Scholar 

  • Alberton P, Popov C, Pragert M, Kohler J, Shukunami C, Schieker M, Docheva D (2012) Conversion of human bone marrow-derived mesenchymal stem cells into tendon progenitor cells by ectopic expression of scleraxis. Stem Cells Dev 21:846–858

    Article  CAS  PubMed  Google Scholar 

  • Alhadlaq A, Mao JJ (2004) Mesenchymal stem cells: isolation and therapeutics. Stem Cells Dev 13:436–448

    Article  CAS  PubMed  Google Scholar 

  • Benjamin M, Kaiser E, Milz S (2008) Structure-function relationships in tendons: a review. J Anat 212:211–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi Y, Stuelten CH, Kilts T, Wadhwa S, Iozzo RV, Robey PG, Chen XD, Young MF (2005) Extracellular matrix proteoglycans control the fate of bone marrow stromal cells. J Biol Chem 280:30481–30489

    Article  CAS  PubMed  Google Scholar 

  • Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, Shi S, Young MF (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13:1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520

    Article  CAS  PubMed  Google Scholar 

  • Bocker W, Rossmann O, Docheva D, Malterer G, Mutschler W, Schieker M (2007) Quantitative polymerase chain reaction as a reliable method to determine functional lentiviral titer after ex vivo gene transfer in human mesenchymal stem cells. J Gene Med 9:585–595

    Article  PubMed  Google Scholar 

  • Brent AE, Schweitzer R, Tabin CJ (2003) A somitic compartment of tendon progenitors. Cell 113:235–248

    Article  CAS  PubMed  Google Scholar 

  • Cashman JD, Eaves AC, Raines EW, Ross R, Eaves CJ (1990) Mechanisms that regulate the cell cycle status of very primitive hematopoietic cells in long-term human marrow cultures. I. Stimulatory role of a variety of mesenchymal cell activators and inhibitory role of TGF-beta. Blood 75:96–101

    CAS  PubMed  Google Scholar 

  • Chou YT, Hsieh CH, Chiou SH, Hsu CF, Kao YR, Lee CC, Chung CH, Wang YH, Hsu HS, Pang ST, Shieh YS, Wu CW (2012) CITED2 functions as a molecular switch of cytokine-induced proliferation and quiescence. Cell Death Differ 19:2015–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Docheva D, Padula D, Popov C, Weishaupt P, Pragert M, Miosge N, Hickel R, Bocker W, Clausen-Schaumann H, Schieker M (2010) Establishment of immortalized periodontal ligament progenitor cell line and its behavioural analysis on smooth and rough titanium surface. Eur Cell Mater 19:228–241

    Article  CAS  PubMed  Google Scholar 

  • Finkel T, Serrano M, Blasco MA (2007) The common biology of cancer and ageing. Nature 448:767–774

    Article  CAS  PubMed  Google Scholar 

  • Guerquin MJ, Charvet B, Nourissat G, Havis E, Ronsin O, Bonnin MA, Ruggiu M, Olivera-Martinez I, Robert N, Lu Y, Kadler KE, Baumberger T, Doursounian L, Berenbaum F, Duprez D (2013) Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. J Clin Invest 123:3564–3576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagedorn L, Floris J, Suter U, Sommer L (2000) Autonomic neurogenesis and apoptosis are alternative fates of progenitor cell communities induced by TGFbeta. Dev Biol 228:57–72

    Article  CAS  PubMed  Google Scholar 

  • Huang GT, Shagramanova K, Chan SW (2006) Formation of odontoblast-like cells from cultured human dental pulp cells on dentin in vitro. J Endod 32:1066–1073

    Article  PubMed  Google Scholar 

  • Ikushima H, Miyazono K (2012) TGF-beta signal transduction spreading to a wider field: a broad variety of mechanisms for context-dependent effects of TGF-beta. Cell Tissue Res 347:37–49

    Article  CAS  PubMed  Google Scholar 

  • Kasper G, Mao L, Geissler S, Draycheva A, Trippens J, Kuhnisch J, Tschirschmann M, Kaspar K, Perka C, Duda GN, Klose J (2009) Insights into mesenchymal stem cell aging: involvement of antioxidant defense and actin cytoskeleton. Stem Cells 27:1288–1297

    Article  CAS  PubMed  Google Scholar 

  • Kleczko EK, Kim J, Keysar SB, Heasley LR, Eagles JR, Simon M, Marshall ME, Singleton KR, Jimeno A, Tan AC, Heasley LE (2015) An inducible TGF-beta2-TGFbetaR pathway modulates the sensitivity of HNSCC cells to tyrosine kinase inhibitors targeting dominant receptor tyrosine kinases. PLoS One 10:e0123600

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohler J, Popov C, Klotz B, Alberton P, Prall WC, Haasters F, Muller-Deubert S, Ebert R, Klein-Hitpass L, Jakob F, Schieker M, Docheva D (2013) Uncovering the cellular and molecular changes in tendon stem/progenitor cells attributed to tendon aging and degeneration. Aging Cell 12:988–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kranc KR, Oliveira DV, Armesilla-Diaz A, Pacheco-Leyva I, Catarina Matias A, Luisa Escapa A, Subramani C, Wheadon H, Trindade M, Nichols J, Kaji K, Enver T, Braganca J (2015) Acute loss of Cited2 impairs nanog expression and decreases self-renewal of mouse embryonic stem cells. Stem Cells 33:699–712

    Article  CAS  PubMed  Google Scholar 

  • Laping NJ, Everitt JI, Frazier KS, Burgert M, Portis MJ, Cadacio C, Gold LI, Walker CL (2007) Tumor-specific efficacy of transforming growth factor-beta RI inhibition in eker rats. Clin Cancer Res 13:3087–3099

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Rando TA (2011) Manifestations and mechanisms of stem cell aging. J Cell Biol 193:257–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mienaltowski MJ, Adams SM, Birk DE (2013) Regional differences in stem cell/progenitor cell populations from the mouse Achilles tendon. Tissue Eng Part A 19:199–210

    Article  CAS  PubMed  Google Scholar 

  • Moses HL, Serra R (1996) Regulation of differentiation by TGF-beta. Curr Opin Genet Dev 6:581–586

    Article  CAS  PubMed  Google Scholar 

  • Moses HL, Yang EY, Pietenpol JA (1990) TGF-beta stimulation and inhibition of cell proliferation: new mechanistic insights. Cell 63:245–247

    Article  CAS  PubMed  Google Scholar 

  • Mueller MB, Fischer M, Zellner J, Berner A, Dienstknecht T, Prantl L, Kujat R, Nerlich M, Tuan RS, Angele P (2010) Hypertrophy in mesenchymal stem cell chondrogenesis: effect of TGF-beta isoforms and chondrogenic conditioning. Cells Tissues Organs 192:158–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni M, Lui PP, Rui YF, Lee YW, Tan Q, Wong YM, Kong SK, Lau PM, Li G, Chan KM (2012) Tendon-derived stem cells (TDSCs) promote tendon repair in a rat patellar tendon window defect model. J Orthop Res 30:613–619

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Wang X, Zhang Y, Carr AJ, Zhu L, Xia Z, Sabokbar A (2014) Development of a refined tenocyte expansion culture technique for tendon tissue engineering. J Tissue Eng Regen Med 8:955–962

    Article  CAS  PubMed  Google Scholar 

  • Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441:1080–1086

    Article  CAS  PubMed  Google Scholar 

  • Rees JD, Wilson AM, Wolman RL (2006) Current concepts in the management of tendon disorders. Rheumatology (Oxford) 45:508–521

    Article  CAS  Google Scholar 

  • Ryan JM, Barry FP, Murphy JM, Mahon BP (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond) 2:8

    Article  Google Scholar 

  • Sahin E, Depinho RA (2010) Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464:520–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster N, Krieglstein K (2002) Mechanisms of TGF-beta-mediated apoptosis. Cell Tissue Res 307:1–14

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer R, Chyung JH, Murtaugh LC, Brent AE, Rosen V, Olson EN, Lassar A, Tabin CJ (2001) Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 128:3855–3866

    CAS  PubMed  Google Scholar 

  • Sharpless NE, DePinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8:703–713

    Article  CAS  PubMed  Google Scholar 

  • da Silva ML, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26:2287–2299

    Article  Google Scholar 

  • Smith RK, Birch HL, Goodman S, Heinegard D, Goodship AE (2002) The influence of ageing and exercise on tendon growth and degeneration—hypotheses for the initiation and prevention of strain-induced tendinopathies. Comp Biochem Physiol A Mol Integr Physiol 133:1039–1050

    Article  CAS  PubMed  Google Scholar 

  • Tempfer H, Wagner A, Gehwolf R, Lehner C, Tauber M, Resch H, Bauer HC (2009) Perivascular cells of the supraspinatus tendon express both tendon- and stem cell-related markers. Histochem Cell Biol 131:733–741

    Article  CAS  PubMed  Google Scholar 

  • Tuite DJ, Renstrom PA, O’Brien M (1997) The aging tendon. Scand J Med Sci Sports 7:72–77

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Akinbiyi T, Xu L, Ramcharan M, Leong DJ, Ros SJ, Colvin AC, Schaffler MB, Majeska RJ, Flatow EL, Sun HB (2010) Tendon-derived stem/progenitor cell aging: defective self-renewal and altered fate. Aging Cell 9:911–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This study was supported by the Fund of Medical Research Foundation of Nanjing Military (ZD04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchun Luo.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Chao Hu and Yan Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Zhang, Y., Tang, K. et al. Downregulation of CITED2 contributes to TGFβ-mediated senescence of tendon-derived stem cells. Cell Tissue Res 368, 93–104 (2017). https://doi.org/10.1007/s00441-016-2552-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2552-1

Keywords

Navigation