Skip to main content

Advertisement

Log in

Perivascular cells of the supraspinatus tendon express both tendon- and stem cell-related markers

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Tendons and ligaments are often affected by mechanical injuries or chronic impairment but other than muscle or bone they possess a low healing capacity. So far, little is known about regeneration of tendons and the role of tendon precursor cells in that process. We hypothesize that perivascular cells of tendon capillaries are progenitors for functional tendon cells and are characterized by expression of marker genes and proteins typical for mesenchymal stem cells and functional tendon cells. Immunohistochemical characterization of biopsies derived from intact human supraspinatus tendons was performed. From these biopsies perivascular cells were isolated, cultured, and characterized using RT-PCR and Western blotting. We have shown for the first time that perivascular cells within tendon tissue express both tendon- and stem/precursor cell-like characteristics. These findings were confirmed by results from in vitro studies focusing on cultured perivascular cells isolated from human supraspinatus tendon biopsies. The results suggest that the perivascular niche may be considered a source for tendon precursor cells. This study provides further information about the molecular nature and localization of tendon precursor cells, which is the basis for developing novel strategies towards tendon healing and facilitated regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo B-M, Zhang L, Shi S, Young MF (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13:1219–1227

    Article  PubMed  CAS  Google Scholar 

  • Brent AE, Schweitzer R, Tabin C (2003) A somitic compartment of tendon progenitors. Cell 113:235–248

    Article  PubMed  CAS  Google Scholar 

  • Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3(3):30–229

    Article  Google Scholar 

  • Chiquet-Ehrismann R, Tucker RP (2004) Connective tissues: signalling by tenascins. Int J Biochem Cell Biol 36:9–1085

    Article  Google Scholar 

  • Chuen FS, Chuk CY, Ping WY, Nar WW, Kim HL, Ming CK (2004) Immunohistochemical characterization of cells in adult human patellar tendons. J Histochem Cytochem 52:1151–1157

    Article  PubMed  CAS  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:13–301

    Article  Google Scholar 

  • Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A, Galvez BG, Messina G, Morosetti R, Li S, Belicchi M, Peretti G, Chamberlain JS, Wright WE, Torrente Y, Ferrari S, Bianco P, Cossu G (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Bio 9:255–267

    Article  CAS  Google Scholar 

  • Docheva D, Hunziker EB, Fässler R, Brandau O (2005) Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Mol Cell Biol 25:699–705

    Article  PubMed  CAS  Google Scholar 

  • Ehler E, Karlhuber G, Bauer HC, Draeger A (1995) Heterogeneity of smooth muscle-associated proteins in mammalian brain microvasculature. Cell Tissue Res 279:393–403

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann A, Pelled G, Turgeman G, Eberle P, Zilberman Y, Shinar H, Keinan-Adamsky K, Winkel A, Shahab S, Navon G, Gross G, Gazit D (2006) Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. J Clin Invest 116:940–952

    Article  PubMed  CAS  Google Scholar 

  • Kannus P (2000) Structure of the tendon connective tissue. Scand J Med Sci Sports 10(6):312

    Article  PubMed  CAS  Google Scholar 

  • Li L, Mignone J, Yang M, Matic M, Penman S, Enikolopov G, Hoffman RM (2003) Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad of Sci USA 100:9958–9961

    Article  CAS  Google Scholar 

  • Lo IKY, Marchuk LL, Hollinshead R, Hart DA, Frank CB (2004) Matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase mRNA levels are specifically altered in torn rotator cuff tendons. Am J Sports Med 32:1223–1229

    Article  PubMed  Google Scholar 

  • Meirelles Lda S, Nardi NB (2003) Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br J Haematol 123:11–702

    Google Scholar 

  • Murchison ND, Price BA, Conner DA, Keene DR, Olson EN, Tabin CJ, Schweitzer R (2007) Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development 134:2697–2708

    Article  PubMed  CAS  Google Scholar 

  • Okano H, Kawahara H, Toriya M, Nakao K, Shibata S, Imai T (2005) Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res 306:349–356

    Article  PubMed  CAS  Google Scholar 

  • Oshima Y, Shukunami C, Honda J, Nishida K, Tashiro F, Miyazaki J, Hiraki Y, Tano Y (2006) Expression and localization of tenomodulin, a transmembrane type chondromodulin-I-related angiogenesis inhibitor, in mouse eyes. Invest Ophtamol Vis Sci 44:23–1814

    Google Scholar 

  • Riley G (2008) Tendinopathy-from basic science to treatment. Nat Clin Pract Rheumatol 4:9–82

    Article  Google Scholar 

  • Salingcarnboriboon R, Yoshitake H, Tsuji K, Obinata M, Amagasa T, Nifuji A, Noda M (2003) Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property. Exp Cell Res 287:289–300

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer R, Chyung JH, Murtaugh LC, Brent AE, Rosen V, Olson EN, Lassar A, Tabin CJ (2001) Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 128:66–3855

    Google Scholar 

  • Sejersen T, Lendahl U (1993) Transient expression of the intermediate filament nestin during skeletal muscle development. J Cell Sci 106:1291–1300

    PubMed  CAS  Google Scholar 

  • Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7:1031–1038

    PubMed  CAS  Google Scholar 

  • Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704

    Article  PubMed  Google Scholar 

  • Shukunami C, Takimoto A, Oro M, Hiraki Y (2006) Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Dev Biol 298:47–234

    Article  Google Scholar 

  • Tamaki T, Okada Y, Uchiyama Y, Tono K, Masuda M, Wada M, Hoshi A, Ishikawa T, Akatsuka A (2007) Clonal multipotency of skeletal muscle-derived stem cells between mesodermal and ectodermal lineage. Stem Cells 25:2283–2290

    Article  PubMed  CAS  Google Scholar 

  • Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, Mortier C, Bron D, Lagneaux L (2005) Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells 23:1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Towler DA, Gelberman RH (2006) The alchemy of tendon repair: a primer for the (S)mad scientist. J Clin Invest 116:863–866

    Article  PubMed  CAS  Google Scholar 

  • Trebaul A, Chan EK, Midwood KS (2007) Regulation of fibroblast migration by tenascin-C. Biochem Soc Trans 35:695–697

    Article  PubMed  CAS  Google Scholar 

  • Tufvesson E, Westergren-Thorsson G (2003) Biglycan and decorin induce morphological and cytoskeletal changes involving signalling by the small GTPases RhoA and Rac1 resulting in lung fibroblast migration. J Cell Sci 116:4857–4864

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Crawford RC, Wang JHC (2004) Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech 37:1543–1550

    Article  PubMed  Google Scholar 

  • Zannettino AC, Paton S, Arthur A, Khor F, Itescu S, Gimble JM, Gronthos S (2008) Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214:21–413

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by grant nr 08/07041 of the Paracelsus Private Medical University by grant nr. 03-08 of the Lorenz Boehler Foundation and by the Dr. Rainer Brettenthaler Stipendium 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Tempfer.

Additional information

H. Tempfer and A. Wagner have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tempfer, H., Wagner, A., Gehwolf, R. et al. Perivascular cells of the supraspinatus tendon express both tendon- and stem cell-related markers. Histochem Cell Biol 131, 733–741 (2009). https://doi.org/10.1007/s00418-009-0581-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-009-0581-5

Keywords

Navigation