Skip to main content
Log in

Encoding noxious heat by spike bursts of antennal bimodal hygroreceptor (dry) neurons in the carabid Pterostichus oblongopunctatus

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Despite thermosensation being crucial in effective thermoregulation behaviour, it is poorly studied in insects. Very little is known about encoding of noxious high temperatures by peripheral thermoreceptor neurons. In carabids, thermo- and hygrosensitive neurons innervate antennal dome-shaped sensilla (DSS). In this study, we demonstrate that several essential fine structural features of dendritic outer segments of the sensory neurons in the DSS and the classical model of insect thermo- and hygrosensitive sensilla differ fundamentally. Here, we show that spike bursts produced by the bimodal dry neurons in the antennal DSS may contribute to the sensation of noxious heat in P. oblongopunctatus. Our electrophysiological experiments showed that, at temperatures above 25 °C, these neurons switch from humidity-dependent regular spiking to temperature-dependent spike bursting. Five out of seven measured parameters of the bursty spike trains, the percentage of bursty dry neurons, the CV of ISIs in a spike train, the percentage of bursty spikes, the number of spikes in a burst and the ISIs in a burst, are unambiguously dependent on temperature and thus may precisely encode both noxious high steady temperatures up to 45 °C as well as rapid step-changes in it. The cold neuron starts to produce temperature-dependent spike bursts at temperatures above 30–35 °C. Thus, the two neurons encode different but largely overlapping ranges in noxious heat. The extent of dendritic branching and lamellation of the neurons largely varies in different DSS, which might be the structural basis for their variation in threshold temperatures for spike bursting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altner H, Loftus R (1985) Ultrastructure and function of insect thermo- and hygroreceptors. Annu Rev Entomol 30:273–295

    Article  Google Scholar 

  • Altner H, Prillinger L (1980) Ultrastructure of invertebrate chemo- thermo-, and hygroreceptors and its functional significance. Int Rev Cytol 67:69–139

    Article  Google Scholar 

  • Altner H, Tichy H, Altner I (1978) Lamellated outer dendritic segments of a sensory cell within a poreless thermo- and hygroreceptive sensillum of the insect Carausius morosus. Cell Tissue Res 191:287–304

    Article  CAS  PubMed  Google Scholar 

  • Altner H, Routil C, Loftus R (1981) The structure of bimodal chemo-, thermo-, and hygroreceptive sensilla on the antenna of Locusta migratoria. Cell Tissue Res 215:289–308

    CAS  PubMed  Google Scholar 

  • Ameismeier F, Loftus R (1988) Response characteristics of cold cell on the antenna of Locusta migratoria L. J Comp Physiol A 163:507–516

    Article  Google Scholar 

  • Chapman RF (1998) The insects, structure and function. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Chown SL, Nicolson SW (2004) Insect physiological ecology. Mechanisms and patterns. Oxford University Press, Oxford

    Book  Google Scholar 

  • Chown SL, Terblanche JS (2007) Physiological diversity in insects: ecological and evolutionary contexts. Adv Insect Physiol 33:50–152

    Article  Google Scholar 

  • Cossins AR, Bowler K (1987) Temperature biology of animals. Chapman & Hall, London

    Book  Google Scholar 

  • Crick F (1984) Function of the thalamic reticular complex: the searchlight hypothesis. Proc Natl Acad Sci U S A 81:4586–4590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis EE, Sokolove PG (1975) Temperature responses of antennal receptors of the mosquito, Aedes aegypti. J Comp Physiol 96:223–236

    Article  Google Scholar 

  • Denlinger DL, Yocum GD (1998) Physiology of heat sensitivity. In: Hallman GJ, Denlinger DL (eds) Temperature sensitivity in insects and application in integrated pest management. Westview, Boulder, pp 7–57

    Google Scholar 

  • Dhaka A, Viswanath V, Patapoutian A (2006) TRP ion channels and temperature sensation. Annu Rev Neurosci 29:135–161

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio A, Maurizi E, Rossi Stacconi MV, Romani R (2012) Functional structure of antennal sensilla in the myrmecophilous beetle Paussus favieri (Coleoptera, Carabidae, Paussini). Micron 43:705–719

    Article  PubMed  Google Scholar 

  • Di Giulio A, Muzzi M, Romani R (2015) Functional anatomy of the explosive defensive system of bombardier beetles (Coleoptera, Carabidae, Brachininae). Arthropod Struct Dev 44:468–490

    Article  PubMed  Google Scholar 

  • Dykes RW (1975) Coding of steady, transient temperatures by cutaneous “cold” fibers serving the hand of monkeys. Biophys J 98:485–500

    CAS  Google Scholar 

  • Ehn R, Tichy H (1996) Response characteristics of a spider warm cell: temperature sensitivities and structural properties. J Comp Physiol A 178:537–542

    Article  Google Scholar 

  • Eyherabide HG, Rokem A, Herz AVM, Samengo I (2008) Burst firing is a neural code in an insect auditory system. Front Comput Neurosci 2:1–17

    Article  Google Scholar 

  • Gabbiani F, Metzner W, Wessel R, Koch C (1996) From stimulus encoding to feature extraction in weakly electric fish. Nature 384:564–567

    Article  CAS  PubMed  Google Scholar 

  • Gallar J, Acosta MC, Belmonte C (2003) Activation of scleral cold thermoreceptors by temperature and blood flow changes. Invest Ophthalmol Vis Sci 44:697–705

    Article  PubMed  Google Scholar 

  • Gingl E, Tichy H (2001) Infrared sensitivity of thermoreceptors. J Comp Physiol A 187:467–475

    Article  CAS  PubMed  Google Scholar 

  • Heinrich B (1993) The hot-blooded insects: strategies and mechanisms of thermoregulation. Springer, Berlin

    Book  Google Scholar 

  • Hess E, Loftus R (1984) Warm and cold receptors of two sensilla on the foreleg tarsi of the tropical bont tick Amblyomma variegatum. J Comp Physiol A 155:187–195

    Article  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation. Mechanisms and processes in physiological evolution. Oxford University Press, New York

    Google Scholar 

  • Keil TA, Steinbrecht RA (1984) Mechanosensitive and olfactory sensilla of insec. In: King RC, Akai H (eds) Insect ultrastructure, vol 1. Plenum, New York, pp 477–516

    Chapter  Google Scholar 

  • Kepecs A, Wang XJ, Lisman J (2002) Bursting neurons signal input slope. J Neurosci 22:9053–9062

    CAS  PubMed  Google Scholar 

  • Klose MK, Robertson RM (2004) Stress-induced thermoprotection of neuromuscular transmission. Integr Comp Biol 44:14–20

    Article  PubMed  Google Scholar 

  • Krahe R, Gabbiani F (2004) Burst firing in sensory systems. Nat Rev Neurosci 5:13–23

    Article  CAS  PubMed  Google Scholar 

  • Lacher V (1964) Elektrophysiologische Untersuchungen an einzelnen Rezeptoren für Geruch, Kohlendioxyd, Luftfeuchtigkeit and Temperatur auf den Antennen der Arbeitsbiene und der Drohne (Apis mellifica L.). Z Vgl Physiol 48:587–623

    Article  Google Scholar 

  • Lisman JE (1997) Bursts as a reliable unit of neural information: making unreliable synapses reliable. Trends Neurosci 20:38–43

    Article  CAS  PubMed  Google Scholar 

  • Loftus R (1968) The response of the antennal cold receptor of Periplaneta americana to rapid temperature changes and steady temperature. Z Vgl Physiol 59:413–455

    Article  Google Scholar 

  • Loftus R (1976) Temperature-dependent dry receptor on antenna of Periplaneta. Tonic response. J Comp Physiol 111:153–170

    Article  Google Scholar 

  • Lövei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu Rev Entomol 41:231–256

    Article  PubMed  Google Scholar 

  • Marsat G, Pollack GS (2006) A behavioural role for feature detection by sensory bursts. J Neurosci 26:10542–10547

    Article  CAS  PubMed  Google Scholar 

  • McIver SB (1985) Mechanoreception. In: Kerkut GA, Gilbert LI (eds) Comparative insect physiology, biochemistry and pharmacology, vol VI. Pergamon, Oxford, pp 71–132

    Google Scholar 

  • Merivee E (1992) Antennal sensilla of the female and male elaterid beetle Agriotes obscurus L. (Coleoptera: Elateridae). Proc Estonian Acad Sci Biol 41:189–215

    Google Scholar 

  • Merivee E, Rahi M, Luik A (1997) Distribution of olfactory and some other antennal sensilla in the male click beetle Agriotes obscurus L. (Coleoptera: Elateridae). Int J Insect Morphol Embryol 26:75–83

    Article  Google Scholar 

  • Merivee E, Rahi M, Bresciani J, Ravn HP, Luik A (1998) Antennal sensilla of the click beetle, Limonius aeruginosus (Oliver) (Coleoptera: Elateridae). Int J Insect Morphol Embryol 27:311–318

    Article  Google Scholar 

  • Merivee E, Rahi M, Luik A (1999) Antennal sensilla of the click beetle, Melanotus villosus (Geoffroy) (Coleoptera: Elateridae). Int J Insect Morphol Embryol 28:41–51

    Article  Google Scholar 

  • Merivee E, Ploomi A, Rahi M, Luik A, Sammelselg V (2000) Antennal sensilla of the ground beetle Bembidion lampros Hbst. (Coleoptera, Carabidae). Acta Zool 81:339–350

    Article  Google Scholar 

  • Merivee E, Ploomi A, Luik A, Rahi M, Sammelselg V (2001) Antennal sensilla of the ground beetle Platynus dorsalis (Pontoppidan, 1763) (Coleoptera, Carabidae). Microsc Res Tech 55:339–349

    Article  CAS  PubMed  Google Scholar 

  • Merivee E, Ploomi A, Rahi M, Bresciani J, Ravn HP, Luik A, Sammelselg V (2002) Antennal sensilla of the ground beetle Bembidion properans Steph. (Coleoptera, Carabidae). Micron 33:429–440

    Article  PubMed  Google Scholar 

  • Merivee E, Vanatoa A, Luik A, Rahi M, Sammelselg V, Ploomi A (2003) Electrophysiological identification of cold receptors on the antennae of the ground beetle Pterostichus aethiops. Physiol Entomol 28:88–96

    Article  Google Scholar 

  • Merivee E, Must A, Luik A, Williams I (2010) Electrophysiological identification of hygroreceptor neurons from the antennal dome-shaped sensilla in the ground beetle Pterostichus oblongopunctatus. J Insect Physiol 56:1671–1678

    Article  CAS  PubMed  Google Scholar 

  • Must A, Merivee E, Mänd M, Luik A, Heidemaa M (2006a) Electrophysiological responses of the antennal campaniform sensilla to rapid changes of temperature in the ground beetles Pterostichus oblongopunctatus and Poecilus cupreus (Tribe Pterostichini) with different ecological preferences. Physiol Entomol 31:278–285

    Article  Google Scholar 

  • Must A, Merivee E, Luik A, Mänd M, Heidemaa M (2006b) Responses of antennal campaniform sensilla to rapid temperature changes in ground beetles of the tribe Platynini with different habitat preferences and daily activity rhythms. J Insect Physiol 52:506–513

    Article  CAS  PubMed  Google Scholar 

  • Must A, Merivee E, Luik A, Williams I, Ploomi A, Heidemaa M (2010) Spike bursts generated by the thermosensitive (cold) neuron from the antennal campaniform sensilla of the ground beetle Platynus assimilis. J Insect Physiol 56:412–421

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi A, Nishino H, Watanabe H, Yokohari F, Nishikawa M (2009) Sex-specific antennal sensory system in the ant Camponotus japonicus: structure and distribution of sensilla on the flagellum. Cell Tissue Res 338:79–97. doi:10.1007/s00441-009-0863-1

    Article  PubMed  Google Scholar 

  • Neven LG (2000) Physiological responses of insects to heat. Postharvest Biol Technol 21:103–111

    Article  CAS  Google Scholar 

  • Nurme K, Merivee E, Must A, Sibul I, Muzzi M, Di Giulio A, Williams I, Tooming E (2015) Responses of the antennal bimodal hygroreceptor neurons to innocuous and noxious high temperatures in the carabid beetle, Pterostichus oblongopunctatus. J Insect Physiol 81:1–13

    Article  CAS  PubMed  Google Scholar 

  • Orio P, Parra A, Madrid R, González O, Belmonte C, Viana F (2012) Role of I h in the firing pattern of mammalian cold thermoreceptor endings. J Neurophysiol 108:3009–3023

    Article  CAS  PubMed  Google Scholar 

  • Parra A, Madrid R, Echevarria D, del Olmo S, Morenilla-Palao C, Acosta MC, Gallar J, Dhaka A, Viana F, Belmonte C (2010) Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. Nat Med 16:1396–1399

    Article  CAS  PubMed  Google Scholar 

  • Piersanti S, Rebora M, Almaas TJ, Salerno G, Gaino E (2011) Electrophysiological identification of thermo-and hygro-sensitive receptor neurons on the antennae of the dragonfly Libellula depressa. J Insect Physiol 57:1391–1398

    Article  CAS  PubMed  Google Scholar 

  • Rebora M, Piersanti S, Almaas TJ, Gaino E (2007) Hygroreceptors in the larva of Libellula depressa (Odonata: Libellulidae). J Insect Physiol 53:550–558

    Article  CAS  PubMed  Google Scholar 

  • Roper P, Bressloff PC, Longtin A (2000) A phase model of temperature-dependent mammalian cold receptors. Neural Comput 12:1067–1093

    Article  CAS  PubMed  Google Scholar 

  • Ruchty M, Romani R, Kuebler LS, Ruschioni S, Roces F, Isidoro N, Kleineidam CJ (2009) The thermo-sensitive sensilla coeloconica of leaf-cutting ants (Atta vollenweideri). Arthropod Struct Dev 38:195–205

    Article  PubMed  Google Scholar 

  • Schäfer K, Braun A, Rempe L (1988) Classification of a calcium conductance in cold receptors. Prog Brain Res 74:29–36

    Article  PubMed  Google Scholar 

  • Shanbhag SR, Singh K, Singh RN (1995) Fine structure and primary sensory projections of sensilla located in the sacculus of the antenna of Drosophila melanogaster. Cell Tissue Res 282:237–249

    Article  CAS  PubMed  Google Scholar 

  • Sherman SM (2001) Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci 24:122–126

    Article  CAS  PubMed  Google Scholar 

  • Snodgrass RE (1935) Principles of insect morphology. McGraw-Hill, New York

    Google Scholar 

  • Steinbrecht RA (1989) The fine structure of thermo-/hygrosensitive sensilla in the silkmoth Bombyx mori: receptor membrane substructure and sensory cell contacts. Cell Tissue Res 255:49–57

    Google Scholar 

  • Swadlow HA, Gusev AG (2001) The impact of ‘bursting’ thalamic impulses at a neocortical synapse. Nat Neurosci 4:402–408

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Platt MD, Lagnese CM, Leslie JR, Hamada FN (2013) Temperature integration at the AC thermosensory neurons in Drosophila. J Neurosci 33:894–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiele HU (1977) Carabid beetles in their environment. Zoophysiology and Ecology, vol. 10. Springer, Berlin

  • Tichy H (1979) Hygro- and thermoreceptive triad in antennal sensillum of the stick insect, Carausius morosus. J Comp Physiol 132:149–152

    Article  Google Scholar 

  • Tichy H (1987) Hygroreceptor identification and response characteristics in the stick insect Carausius morosus. J Comp Physiol 160:43–53

    Article  Google Scholar 

  • Tichy H (2007) Humidity-dependent cold cells on the antenna of the stick insect. J Neurophysiol 97:3851–3858

    Article  PubMed  Google Scholar 

  • Tichy H, Kallina W (2010) Insect hygroreceptor responses to continuous changes in humidity and air pressure. J Neurophysiol 103:3274–3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldow U (1970) Elektrophysiologische Untersuchungen an Feuchte-, Troken- und Kälterezeptoren auf der Antenne der Wanderheuschrecke Locusta. Z Vgl Physiol 69:249–283

    Article  Google Scholar 

  • Wang G, Qiu Y, Lu T, Kwon HW, Pitts R, van Loon J, Takken W, Zwiebel LJ (2009) Anopheles gambiae TRPA1 is a heat-activated channel expressed in thermosensitive sensilla of female antennae. Eur J Neurosci 30:967–974

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokohari F (1981) The sensillum capitulum, an antennal hygroreceptive and thermoreceptive sensillum of the cockroach, Periplaneta americana L. Cell Tissue Res 216:525–543

    Article  CAS  PubMed  Google Scholar 

  • Yokohari F (1983) The coelocapitular sensillum, an antennal hygroreceptive and thermoreceptive sensillum of the honeybee, Apis mellifera. Cell Tissue Res 233:355–365

    Article  CAS  PubMed  Google Scholar 

  • Yokohari F (1999) Hygro- and thermoreceptors. In: Eguchi E, Tominaga Y (eds) Atlas of arthropod sensory receptors: dynamic morphology in relation to function. Springer, Berlin, pp 191–210

    Google Scholar 

  • Yokohari F, Tominaga Y, Tateda H (1982) Antennal hygroreceptors of the honeybee, Apis mellifera L. Cell Tissue Res 226:63–73

    Article  CAS  PubMed  Google Scholar 

  • Zacharuk RY (1985) Antennae and sensilla. In: Kerkut GA, Gilbert LI (eds) Comparative insect physiology, biochemistry and pharmacology, vol VI. Pergamon, Oxford, pp 1–69

    Google Scholar 

Download references

Acknowledgments

The study was supported by institutional research funding IUT36-2 of the Estonian Ministry of Education and Research and Estonian State Forest Management forest protection project (2012–2015) (T12115MIMK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Must.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Must, A., Merivee, E., Nurme, K. et al. Encoding noxious heat by spike bursts of antennal bimodal hygroreceptor (dry) neurons in the carabid Pterostichus oblongopunctatus . Cell Tissue Res 368, 29–46 (2017). https://doi.org/10.1007/s00441-016-2547-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2547-y

Keywords

Navigation