Skip to main content
Log in

Fine structure and primary sensory projections of sensilla located in the sacculus of the antenna of Drosophila melanogaster

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Sensilla lining the inner walls of the sacculus on the third antennal segment of Drosophila melanogaster were studied by light and transmission electron microscopy. The sacculus consists of three chambers: I, II and III. Inside each chamber morphologically distinct groups of sensilla having inflexible sockets were observed. Chamber I contains no-pore sensilla basiconica (np-SB). The lumen of all np-SB are innervated by two neurons, both resembling hygroreceptors. However, a few np-SB contain one additional neuron, presumed to be thermoreceptive. Chamber II houses no-pore sensilla coeloconica (np-SC). All np-SC are innervated by three neurons. The outer dendritic segments of two of these neurons fit tightly to the wall of the lumen and resemble hygroreceptor neurons. A third, more electron-dense sensory neuron, terminates at the base of the sensillum and resembles a thermoreceptor cell. Chamber III of the sacculus is divided into ventral and dorsal compartments, each housing morphologically distinct grooved sensilla (GS). The ventral compartment contains thick GS1, and the dorsal compartment has slender sensilla GS2. Ultrastructurally, both GS1 and GS2 are doublewalled sensilla with a longitudinal slit-channel system and are innervated by two neurons. The dendritic outer segment of one ofthe two neurons innervates the lumen of the GS and branches. On morphological criteria, we infer this neuron to be olfactory. The other sensory neuron is probably thermoreceptive. Thus, the sacculus in Drosophila has sensilla that are predominantly involved in hygroreception, thermoreception, and olfaction. We have traced the sensory projections of the neurons innervating the sacculus sensilla of chamber III using cobaltous lysine or ethanolic cobalt (II) chloride. The fibres project to the antennal lobes, and at least four glomeruli (VM3, DA3 and DL2-3) are projection areas of sensory neurons from these sensilla. glomerulus DL2 is a common target for the afferent fibres of the surface sensilla coeloconica and GS, whereas the VM3, DA3 and DL3 glomeruli receive sensory fibres only from the GS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altner H, Loftus R (1985) Ultrastructure and function of insect thermo- and hygroreceptors. Annu Rev Entomol 30:273–295

    Google Scholar 

  • Altner H, Prillinger L (1980) Ultrastructure of invertebrate chemo-, thermo- and hygroreceptors and its functional significance. Int Rev Cytol 67:69–139

    Google Scholar 

  • Altner H, Sass H, Altner I (1977) Relationship between structure and function of antennal chemo-, hygro- and thermoreceptive sensilla in Periplaneta americana. Cell Tissue Res 176:389–405

    Google Scholar 

  • Altner H, Tichy H, Altner I (1978) Lamellated outer dendritic segments of a sensory cell within a poreless thermo- and hygroreceptive sensillum of the insect Carausius morosus. Cell Tissue Res 191:287–304

    Google Scholar 

  • Altner H, Schaller-Selzer L, Stetter H, Wohlrab I (1983) Poreless sensilla with inflexible sockets: a comparative study of a fundamental type of insect sensilla probably comprising thermo- and hygroreceptors. Cell Tissue Res 234:279–307

    Google Scholar 

  • Ayer RK, Carlson J (1992) Olfactory physiology in the Drosophila antenna and maxillary palp: acj6 distinguishes tow classes of odorant pathways. J Neurobiol 23:965–982

    Google Scholar 

  • Bacon JP, Altman JS (1977) A silver intensification method for cobalt-filled neurons in whole-mount preparations. Brain Res 138:359–363

    Google Scholar 

  • Barrows WM (1907) The reactions of the pomace fly, Drosophila ampelophila Loew, to odorous substances. J Exp Zool 4:515–537

    Google Scholar 

  • Boeckh J, Distler P, Ernst KD, Hösl M, Malun D (1990) Olfactory bulb and antennal lobe. In: Schild D (ed) Information processing of chemical sensory stimuli. Springer, New York Berlin Heidelberg

    Google Scholar 

  • Bogner F, Boppré M, Ernst KD, Boeckh J (1986) CO2 sensitive receptors on labial palps of Rhodogastrica moths (Lepidoptera: Arctiidae): physiology, fine structure and central projection. J Comp Physiol [A] 158:741–749

    Google Scholar 

  • Carlson J (1991) Olfaction in Drosophila: genetic and molecular analysis. Trends Neurosci 14:520–524

    Google Scholar 

  • Christensen TA, Hildebrand JG (1987) Functions, organization and physiology of the olfactory pathways in lepidoperan brain. In: Gupta AP (ed) Arthropod brain: its evolution, development, structure and function. Wiley, New York, pp 457–484

    Google Scholar 

  • Dalton AJ (1955) A chrome-osmium tetroxide fixative for electron microscopy. Anat Rec 121:281A

    Google Scholar 

  • Ernst KD, Boeckh J, Boeckh V (1977) A neuroanatomical study of the the central antennal pathways in insects. II. Deutocerebral connections in Locusta migratoria and Periplaneta americana. Cell Tissue Res 176:285–308

    Google Scholar 

  • Ferris CF (1965) External morphology of the adult. In: Demerec M (ed) Biology of Drosophila, 2nd edn. Hafner, New York, pp 368–419

    Google Scholar 

  • Gödde J, Haug T (1990) Analysis of the electrical responses of antennal thermo- and hygroreceptors of Antheraea (Saturniidae, Lepidoptera) to thermal, mechanical, and electrical stimuli. J Comp Physiol [A] 167:391–401

    Google Scholar 

  • Haug T (1986) Struktur, Funktion and Projektion dder antennalen Thermo- und Hygrorezeptoren von Antheraea pernyi (Lepidoptera: Saturniidae). Thesis, University of Regensburg

  • Homburg U, Christensen TA, Hildebrand JG (1989) Structure and function of the deutocerebrum in insects. Annu Rev Entomol 34:477–501

    Google Scholar 

  • Itoh T, Yokohari F, Tanimura T, Tominaga Y (1991) External morphology of sensilla in the sacculus of an antennal flagellum of the fruit fly Drosophila melanogaster (Diptera: Drosophilidae). Int J Insect Morphol Embryol 20:235–243

    Google Scholar 

  • Kaib M (1974) Die Fleisch- und Blumenduftrezeptoren auf der Antenne der Schmeißfliege Calliphora vicina. J Comp Physiol 95:105–121

    Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137A

    Google Scholar 

  • Kent KS, Harrow ID, Quartaro P, Hildebrand JG (1986) An accessory olfactory pathway in Lepidoptera: the labial pit organ and its central projections in Menduca sexta and certain other sphinx moths and silk moths. Cell Tissue Res 245:237–245

    Google Scholar 

  • Lacher V (1964) Erektrophysiologische Untersuchungen an einzelnen Rezeptoren für Geruch, Kohlendioxyd, Luftfeuchtigkeit und Temperature auf den Antennen der Arbeitsbiene und der Drohne (Apis mellifera L.). Z Vergl Physiol 48:587–623

    Google Scholar 

  • Lee JK, Selzer R, Altner H (1985) Lamellated outer dendritic segments of a chemoreceptor within wall-pore sensilla in the labial palp pit organ in the butterfly, Pieris rapae L. (Insecta: Lepidoptera). Cell Tissue Res 240:333–342

    Google Scholar 

  • Loftus R (1976) Temperature-dependent dry receptor on antenna of Periplaneta: tonic response. J Comp Physiol 111:153–170

    Google Scholar 

  • Mindek G (1968) Proliferations- und Transdeterminationsleistungen der weiblichen Genital-Imaginalscheiben von Drosophila melanogaster nach Kultur in vivo. Rouxs Arch Entw Mech Org 161:249–280

    Google Scholar 

  • Nayak SV, Singh RN (1983) Sensilla on the tarsal segments and mouthparts of adult Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int J Insect Morphol Embryol 12:273–291

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate of high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Google Scholar 

  • Riesgo-Escovar J, Woodard C, Gaines P, Carlson J (1992) Development and organization of the Drosophila olfactory system: an analysis using enhancer traps. J Neurobiol 23:947–964

    Google Scholar 

  • Rodrigues V (1988) Spatial coding of olfactory information in the antennal lobe of Drosophila melanogaster. Brain Res 453:299–307

    Google Scholar 

  • Siddiqi O (1983) Olfactory neurogenetics of Drosophila. In: Chopar VL, Joshi BC, Sharma RP, Bansal HC (eds) Genetics: new frontiers, vol 3. Oxford and IBH, New Delhi Bombay Calcutta, pp 243–261

    Google Scholar 

  • Siddiqi O (1987) Neurogenetics of olfaction in Drosophila melanogaster. Trends Genet 3:137–142

    Google Scholar 

  • Singh RN, Nayak SV (1985) Fine structure and primary sensory projections of sensilla on the maxillary palp of Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int J Insect Morphol Embryol 14:291–306

    Google Scholar 

  • Steinbrecht RA (1984) Chemo-, hygro- and thermoreceptors. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol 1: Invertebrates. Springer, Berlin Heidelberg New York, pp 523–553

    Google Scholar 

  • Steinbrecht RA (1989) The fine structure of thermo-/hygrosensitive sensilla in the silkmoth Bombxy mori: receptor membrane structure and sensory cell contacts. Cell Tissue Res 255:49–57

    Google Scholar 

  • Steinbrecht RA, Müller B (1991) The thermo-/hygrosensitive sensilla of the silkmoth, Bombyx mori: morphological changes after dry and moist adaptation. Cell Tissue Res 266:441–456

    Google Scholar 

  • Stocker RF (1994) The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res 275:3–26

    Google Scholar 

  • Stocker RF, Lawrence PA (1981) Sensory projections from normal and homeotically transformed antennae in Drosophila. Dev Biol 82:224–237

    Google Scholar 

  • Stocker RF, Singh RN (1983) Different types of antennal sensilla in Drosophila project into different glomeruli of the brain. Experientia 39:674

    Google Scholar 

  • Stocker RF, Singh RN, Schorderet M, Siddiqi O (1983) Projection patterns of different types of antennal sensilla in the antennal glomeruli of Drosophila melanogaster. Cell Tissue Res 232:237–248

    Google Scholar 

  • Stocker RF, Lienhard MC, Borst A, Fischbach KF (1990) Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res 262:9–34

    Google Scholar 

  • Störtkuhl KF, Hofbauer A, Keller V, Gendre N, Stocker RF (1994) Analysis of immunocytochemical staining patterns in the antennal system of Drosophila melanogaster. Cell Tissue Res 275:27–38

    Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Tichy H (1979) Hygro- and thermoreceptive triad in antennal sensillum in the stick insect, Carausius morosus. J Comp Physiol 132:149–152

    Google Scholar 

  • Tichy H, Loftus R (1990) Response of moist-air receptor on antenna of the stick insect Carausius morosus to step changes in temperature. J Comp Physiol [A] 166:507–516

    Google Scholar 

  • Tominaga Y, Yokohari F (1982) The external structure of the sensillum capitulum, a hygro- and thermoreceptive sensillum of the cockroach, Periplaneta americana. Cell Tissue Res 226:309–318

    Google Scholar 

  • Venkatesh S, Singh RN (1984) Sensilla on the third antennal segment of Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int J Insect Morphol Embryol 13:51–63

    Google Scholar 

  • Waldow U (1970) Elektrophysiologische Untersuchungen an Feuchte-, Trocken-, und Kälterezeptoren auf der Antenne der Wanderheuschrecke Locusta. Z Vergl Physiol 69:249–283

    Google Scholar 

  • Yetman S, Pollack GS (1986) Central projections of labellar taste hairs in the blowfly, Phormia regina Meigen. Cell Tissue Res 245:555–561

    Google Scholar 

  • Yokohari F (1981) The sensillum capitulum, an antennal hygro- and thermoreceptive sensillum of the cockroach, Periplaneta americana L. Cell Tissue Res 216:525–543

    Google Scholar 

  • Yokohari F (1983) The coelocapitular sensillum, an antennal hygro- and thermoreceptive sensillum of the honey bee, Apis mellifera L. Cell Tissue Res 233:355–365

    Google Scholar 

  • Yokohari F, Tateda H (1976) Moist and dry hygroreceptors for relative humidity of the cockroach, Periplaneta americana L. J Comp Physiol 106:137–152

    Google Scholar 

  • Yokohari F, Tominaga Y, Ando M, Tateda H (1975) An antennal hygroreceptive sensillum of the cockroach. J Electron Microsc (Tokyo) 24:291–293

    Google Scholar 

  • Yokohari F, Tominaga Y, Tateda H (1982) Antennal hydroreceptors of the honey bee, Apis mellifera L. Cell Tissue Res 226:63–73

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanbhag, S.R., Singh, K. & Singh, R.N. Fine structure and primary sensory projections of sensilla located in the sacculus of the antenna of Drosophila melanogaster . Cell Tissue Res 282, 237–249 (1995). https://doi.org/10.1007/BF00319115

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00319115

Key words

Navigation