Skip to main content
Log in

Altered glycogen metabolism causes hepatomegaly following an Atg7 deletion

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Autophagy is a lysosomal degradation process involved in the turnover of organelles or other cell constituents, in providing sources for energy production under starving conditions and in cell metabolism. A key protein in the macroautophagic machinery is the autophagy-related protein (Atg) 7. Constitutive deletion of Atg7 is lethal at birth. A conditional deletion of Atg7 in hepatocytes leads to hepatomegaly and in aged animals to liver tumors. With this study, we aim at analyzing the hepatomegaly development in more detail. The 3- to 4-fold enlargement of the liver takes place between days 25 and 35 after birth (P25–P35) and persists at least until P90. This is accompanied by a change in the expression of enzymes involved in the glycogen/glucose metabolism. While glycogen synthesis is inhibited, glucose is preferentially kept as glucose-6-phosphate inside the cells, inducing a swelling of the cells caused by hyperosmolarity. An increase of lipogenic enzymes suggests that glucose-6-phosphate is delivered to lipogenic pathways, which is supported by the occurrence of a steatosis around P30. The development of hepatomegaly is accompanied by a polyploidisation of hepatocytes, an enhanced expression of genes related to inflammatory processes and an infiltration of macrophages and granulocytes. Our data provide evidence that the attenuation of macroautophagy in hepatocytes leads to a glucose retention that causes cell swelling. The resulting hepatomegaly, which develops in a time interval of about 10 days, perturbs liver perfusion and induces an inflammatory reaction together with polyploidisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adhikary T, Kaddatz K, Finkernagel F, Schönbauer A, Meissner W, Scharfe M, Jarek M, Blöcker H, Müller-Brüsselbach S, Müller R (2011) Genomewide analyses define different modes of transcriptional regulation by peroxisome proliferator-activated receptor-β/δ (PPARβ/δ). PLoS ONE 6, e16344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anding AL, Baehrecke EH (2015) Autophagy in cell life and cell death. Curr Top Dev Biol 114:67–91

    Article  PubMed  Google Scholar 

  • Chou JY, Jun HS, Mansfield BC (2010) Glycogen storage disease type I and G6Pase-β deficiency: etiology and therapy. Nat Rev Endocrinol 6:676–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conesa-Zamora P, Torres-Moreno D, Isaac MA, Pérez-Guillermo M (2013) Gene amplification and immunohistochemical expression of ERBB2 and EGFR in cervical carcinogenesis. Correlation with cell-cycle markers and HPV presence. Exp Mol Pathol 95:151–155

    Article  CAS  PubMed  Google Scholar 

  • Duncan AW (2013) Aneuploidy, polyploidy and ploidy reversal in the liver. Semin Cell Dev Biol 24:347–356

    Article  PubMed  Google Scholar 

  • Duncan AW, Taylor MH, Hickey RD, Hanlon Newell AE, Lenzi ML, Olson SB, Finegold MJ, Grompe M (2010) The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 467:707–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan AW, Hanlon Newell AE, Bi W, Finegold MJ, Olson SB, Beaudet AL, Grompe M (2012) Aneuploidy as a mechanism for stress-induced liver adaptation. J Clin Invest 122:3307–3315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eliades A, Papadantonakis N, Matsuura S, Mi R, Bais MV, Trackman P, Ravid K (2013) Megakaryocyte polyploidy is inhibited by lysyl oxidase propeptide. Cell Cycle Georget Tex 12:1242–1250

    Article  CAS  Google Scholar 

  • Ezaki J, Matsumoto N, Takeda-Ezaki M, Komatsu M, Takahashi K, Hiraoka Y, Taka H, Fujimura T, Takehana K, Yoshida M, Iwata J, Tanida I, Furuya N, Zheng D-M, Tada N, Tanaka K, Kominami E, Ueno T (2011) Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy 7:727–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frawley LE, Orr-Weaver TL (2015) Polyploidy. Curr Biol 25:R353–R358

    Article  CAS  PubMed  Google Scholar 

  • Ganley IG, Wong P-M, Gammoh N, Jiang X (2011) Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol Cell 42:731–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebhardt A, Kosan C, Herkert B, Möröy T, Lutz W, Eilers M, Elsässer H-P (2007) Miz1 is required for hair follicle structure and hair morphogenesis. J Cell Sci 120:2586–2593

    Article  CAS  PubMed  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed  PubMed Central  Google Scholar 

  • Görs S, Kucia M, Langhammer M, Junghans P, Metges CC (2009) Technical note: milk composition in mice--methodological aspects and effects of mouse strain and lactation day. J Dairy Sci 92:632–637

    Article  PubMed  Google Scholar 

  • Guidotti J-E, Brégerie O, Robert A, Debey P, Brechot C, Desdouets C (2003) Liver cell polyploidization: a pivotal role for binuclear hepatocytes. J Biol Chem 278:19095–19101

    Article  CAS  PubMed  Google Scholar 

  • Ha J, Guan K-L, Kim J (2015) AMPK and autophagy in glucose/glycogen metabolism. Mol Aspects Med (in press)

  • Hall AP, Elcombe CR, Foster JR, Harada T, Kaufmann W, Knippel A, Küttler K, Malarkey DE, Maronpot RR, Nishikawa A, Nolte T, Schulte A, Strauss V, York MJ (2012) Liver hypertrophy: a review of adaptive (adverse and non-adverse) changes--conclusions from the 3rd International ESTP Expert Workshop. Toxicol Pathol 40:971–994

    Article  CAS  PubMed  Google Scholar 

  • Hao L, Ito K, Huang K-H, Sae-tan S, Lambert JD, Ross AC (2014) Shifts in dietary carbohydrate-lipid exposure regulate expression of the non-alcoholic fatty liver disease-associated gene PNPLA3/adiponutrin in mouse liver and HepG2 human liver cells. Metabolism 63:1352–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J Biom Z 50:346–363

    Article  Google Scholar 

  • Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, Watanabe S, Ando J, Iwadate M, Yamamoto M, Lee M-S, Tanaka K, Komatsu M (2011) Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193:275–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito S, Karnovsky MJ (1968) Formaldehyde-glutaraldehyde fixatives containing trinitro compounds. J Cell Biol 39:168–169

    Google Scholar 

  • Jochheim A, Hillemann T, Kania G, Scharf J, Attaran M, Manns MP, Wobus AM, Ott M (2004) Quantitative gene expression profiling reveals a fetal hepatic phenotype of murine ES-derived hepatocytes. Int J Dev Biol 48:23–29

    Article  CAS  PubMed  Google Scholar 

  • Karsli-Uzunbas G, Guo JY, Price S, Teng X, Laddha SV, Khor S, Kalaany NY, Jacks T, Chan CS, Rabinowitz JD, White E (2014) Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov 4:914–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM, Debnath J, Deretic V, Elazar Z, Eskelinen E-L, Finkbeiner S, Fueyo-Margareto J, Gewirtz D, Jäättelä M, Kroemer G, Levine B, Melia TJ, Mizushima N, Rubinsztein DC, Simonsen A, Thorburn A, Thumm M, Tooze SA (2011) A comprehensive glossary of autophagy-related molecules and processes (2nd edn). Autophagy 7:1273–1294

    Article  PubMed  PubMed Central  Google Scholar 

  • Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotoulas OB, Ho J, Adachi F, Weigensberg BI, Phillips MJ (1971) Fine structural aspects of the mobilization of hepatic glycogen. II. Inhibition of glycogen breakdown. Am J Pathol 63:23–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotoulas OB, Kalamidas SA, Kondomerkos DJ (2004) Glycogen autophagy. Microsc Res Tech 64:10–20

    Article  CAS  PubMed  Google Scholar 

  • Kotoulas OB, Kalamidas SA, Kondomerkos DJ (2006) Glycogen autophagy in glucose homeostasis. Pathol Res Pract 202:631–638

    Article  CAS  PubMed  Google Scholar 

  • Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lee IH, Kawai Y, Fergusson MM, Rovira II, Bishop AJR, Motoyama N, Cao L, Finkel T (2012) Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science 336:225–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif 25:402–408

    Article  CAS  Google Scholar 

  • Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–248

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Lopez N, Singh R (2015) Autophagy and lipid droplets in the liver. Annu Rev Nutr 35:215–237

    Article  CAS  PubMed  Google Scholar 

  • McBride A, Hardie DG (2009) AMP-activated protein kinase--a sensor of glycogen as well as AMP and ATP? Acta Physiol (Oxford) 196:99–113

    Article  CAS  Google Scholar 

  • Michalopoulos GK (2010) Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am J Pathol 176:2–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nascimbeni AC, Fanin M, Masiero E, Angelini C, Sandri M (2012) The role of autophagy in the pathogenesis of glycogen storage disease type II (GSDII). Cell Death Differ 19:1698–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noda NN, Ohsumi Y, Inagaki F (2010) Atg8-family interacting motif crucial for selective autophagy. FEBS Lett 584:1379–1385

    Article  CAS  PubMed  Google Scholar 

  • Olmo E (1983) Nucleotype and cell size in vertebrates: a review. Basic Appl Histochem 27:227–256

    CAS  PubMed  Google Scholar 

  • Raben N, Schreiner C, Baum R, Takikita S, Xu S, Xie T, Myerowitz R, Komatsu M, Van der Meulen JH, Nagaraju K, Ralston E, Plotz PH (2010) Suppression of autophagy permits successful enzyme replacement therapy in a lysosomal storage disorder--murine Pompe disease. Autophagy 6:1078–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revel JP, Napolitano L, Fawcett DW (1960) Identification of glycogen in electron micrographs of thin tissue sections. J Biophys Biochem Cytol 8:575–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider JL, Cuervo AM (2014) Liver autophagy: much more than just taking out the trash. Nat Rev Gastroenterol Hepatol 11:187–200

  • Schoenfelder KP, Fox DT (2015) The expanding implications of polyploidy. J Cell Biol 209:485–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sica V, Galluzzi L, Bravo-San Pedro JM, Izzo V, Maiuri MC, Kroemer G (2015) Organelle-specific initiation of autophagy. Mol Cell 59:522–539

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25:795–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson EB (1925) The cell in development and heredity. Macmillan, New York

    Google Scholar 

  • Xiong J (2015) Atg7 in development and disease: panacea or Pandora’s Box? Protein Cell 6:722–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Li P, Fu S, Calay ES, Hotamisligil GS (2010) Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 11:467–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Waltraud Ackermann and Uschi Lehr for their excellent technical assistance and David Fuhrmann for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Peter Elsässer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kern, L., Spreckels, J., Nist, A. et al. Altered glycogen metabolism causes hepatomegaly following an Atg7 deletion. Cell Tissue Res 366, 651–665 (2016). https://doi.org/10.1007/s00441-016-2477-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2477-8

Keywords

Navigation