Skip to main content
Log in

Phenotype and distribution pattern of nestin-GFP-expressing cells in murine myenteric plexus

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The enteric nervous system has to adapt to altering dietary or environmental conditions and presents an enormous plasticity that is conserved over the whole lifespan. It harbours neural-crest-derived neurons, glial cells and their precursors. Based on a nestin-green fluorescent protein (NGFP) transgenic model, a histological inventory has been performed to deliver an overview of neuronal and glial markers for the various parts of the gastrointestinal tract in newborn (postnatal day 7) and adult mice under homeostatic conditions. Whereas NGFP-positive glial cells can be found in all parts of the gut at any individual age, a specific NGFP population is present with both neuronal morphology and marker expression in the myenteric plexus (nNGFP). These cells appear in variable quantities, depending on age and location. Their overall abundance decreases from newborn to adults and their spatial distribution is also age-dependent. In newborn gut, nNGFP cells are found in similar quantities throughout the gut, with a significantly lower presence in the duodenum. Their expression increases in the adult mouse from the stomach to the colon. All of these nNGFP cells expressed either (but not both) of the glia markers S100 or glial fibrillary acidic protein (GFAP). In the S100-positive glia population, a subset of cells also shows a neuronal morphology (nS100), without expressing nestin. Thus, the presence of premature neurons that express NGFP demonstrates that neurogenesis takes place far beyond birth. In enteric neurons, NGFP acts as a marker for neuronal plasticity showing the differentiation and change in the phenotype of neuronal precursor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Azan G, Low WC, Wendelschafer-Crabb G, Ikramuddin S, Kennedy WR (2011) Evidence for neural progenitor cells in the human adult enteric nervous system. Cell Tissue Res 344:217–225

    Article  PubMed  Google Scholar 

  • Bassotti G, Villanacci V, Nascimbeni R, Cadei M, Fisogni S, Antonelli E, Corazzi N, Salerni B (2010) Enteric neuroglial apoptosis in inflammatory bowel diseases. J Crohn’s Colitis 3:264–270

    Article  Google Scholar 

  • Belkind-Gerson J, Carreon-Rodriguez A, Benedict LA, Steiger C, Pieretti A, Nagy N, Dietrich J, Goldstein AM (2013) Nestin-expressing cells in the gut give rise to enteric neurons and glial cells. Neurogastroenterol Motil 25:e67

    Article  Google Scholar 

  • Belkind-Gerson J, Hotta R, Nagy N, Thomas AR, Graham H, Cheng L, Solorzano J, Nguyen D, Kamionek M, Dietrich J, Cherayil BJ, Goldstein AM (2015) Colitis induces enteric neurogenesis through a 5-HT4-dependent mechanism. Inflamm Bowel Dis 21:870–878

    Article  PubMed  Google Scholar 

  • Belkind-Gerson J, Hotta R, Whalen M, Nayyar N, Nagy N, Cheng L, Zuckerman A, Goldstein AM, Dietrich J (2016) Engraftment of enteric neural progenitor cells into the injured adult brain. BMC Neurosci 17:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Boesmans W, Lasrado R, Vanden Berghe P, Pachnis V (2014) Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia 63:229–241

    Article  PubMed  Google Scholar 

  • Butler Tjaden NE, Trainor PA (2013) The developmental etiology and pathogenesis of Hirschsprung disease. Transl Res 162:1–15

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekharan B, Anitha M, Blatt R, Shahnavaz N, Kooby D, Staley C, Mwangi S, Jones DP, Sitaraman SV, Srinivasan S (2010) Colonic motor dysfunction in human diabetes is associated with enteric neuronal loss and increased oxidative stress. Neurogastroenterol Motil 23:e126

    Google Scholar 

  • Collins J, Borojevic R, Verdu EF, Huizinga JD, Ratcliffe EM (2014) Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol Motil 26:98–107

    Article  CAS  PubMed  Google Scholar 

  • Dahlstrand J, Collins VP, Lendahl U (1992) Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res 52:5334–5341

    CAS  PubMed  Google Scholar 

  • Dahlstrand J, Lardelli M, Lendahl U (1995) Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res Dev Brain Res 84:109–129

    Article  CAS  PubMed  Google Scholar 

  • Derkinderen P, Rouaud T, Lebouvier T, Bruley des Varannes S, Neunlist M, De Giorgio R (2011) Parkinson disease: the enteric nervous system spills its guts. Neurology 77:1761–1767

    Article  CAS  PubMed  Google Scholar 

  • Fichter M, Klotz M, Hirschberg DL, Waldura B, Schofer O, Ehnert S, Schwarz LK, Ginneken CV, Schäfer KH (2011) Breast milk contains relevant neurotrophic factors and cytokines for enteric nervous system development. Mol Nutr Food Res 55:1592–1596

    Article  CAS  PubMed  Google Scholar 

  • Filogamo G, Cracco C (1995) Models of neuronal plasticity and repair in the enteric nervous system: a review. Ital J Anat Embryol 100 (Suppl 1):185–195

    PubMed  Google Scholar 

  • Florenes VA, Holm R, Myklebost O, Lendahl U, Fodstad O (1994) Expression of the neuroectodermal intermediate filament nestin in human melanomas. Cancer Res 54:354–356

    CAS  PubMed  Google Scholar 

  • Frojdman K, Pelliniemi LJ, Lendahl U, Virtanen I, Eriksson JE (1997) The intermediate filament protein nestin occurs transiently in differentiating testis of rat and mouse. Differ Res Biol Divers 61:243–249

    Article  CAS  Google Scholar 

  • Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9:286–294

    Article  CAS  PubMed  Google Scholar 

  • Geboes K, Collins S (1998) Structural abnormalities of the nervous system in Crohn’s disease and ulcerative colitis. Neurogastroenterol Motil 10:189–202

    Article  CAS  PubMed  Google Scholar 

  • Hagl CI, Heumuller-Klug S, Wink E, Wessel L, Schäfer KH (2013) The human gastrointestinal tract, a potential autologous neural stem cell source. PLoS One 8:e72948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanani M, Ledder O, Yutkin V, Abu-Dalu R, Huang TY, Hartig W, Vannucchi MG, Faussone-Pellegrini MS (2003) Regeneration of myenteric plexus in the mouse colon after experimental denervation with benzalkonium chloride. J Comp Neurol 462:315–327

    Article  PubMed  Google Scholar 

  • Hao MM, Young HM (2009) Development of enteric neuron diversity. J Cell Mol Med 13:1193–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi H, Takahashi R, Nishi T, Sakamoto M, Benno Y (2005) Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol 54:1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Heanue TA, Pachnis V (2007) Enteric nervous system development and Hirschsprung’s disease: advances in genetic and stem cell studies. Nat Rev Neurosci 8:466–479

    Article  CAS  PubMed  Google Scholar 

  • Heanue TA, Pachnis V (2011) Prospective identification and isolation of enteric nervous system progenitors using Sox2. Stem Cells 29:128–140

    Article  CAS  PubMed  Google Scholar 

  • Hendrickson ML, Rao AJ, Demerdash ON, Kalil RE (2011) Expression of nestin by neural cells in the adult rat and human brain. PLoS One 6:e18535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotta R, Stamp LA, Foong JP, McConnell SN, Bergner AJ, Anderson RB, Enomoto H, Newgreen DF, Obermayr F, Furness JB, Young HM (2013) Transplanted progenitors generate functional enteric neurons in the postnatal colon. J Clin Invest 123:1182–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jessen KR, Mirsky R (1980) Glial cells in the enteric nervous system contain glial fibrillary acidic protein. Nature 286:736–737

    Article  CAS  PubMed  Google Scholar 

  • Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671–682

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Wang J, Khan MI, Middlemiss PJ, Salgado-Ceballos H, Werstiuk ES, Wickson R, Rathbone MP (2003) Enteric glia promote regeneration of transected dorsal root axons into spinal cord of adult rats. Exp Neurol 181:79–83

    Article  PubMed  Google Scholar 

  • Joseph NM, He S, Quintana E, Kim YG, Nunez G, Morrison SJ (2011) Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut. J Clin Invest 121:3398–3411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jost T, Lacroix C, Braegger C, Chassard C (2013) Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br J Nutr 110:1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Jost T, Lacroix C, Braegger C, Chassard C (2015) Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr Rev 73:426–437

    Article  PubMed  Google Scholar 

  • Laranjeira C, Sandgren K, Kessaris N, Richardson W, Potocnik A, Vanden Berghe P, Pachnis V (2011) Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J Clin Invest 121:3412–3424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595

    Article  CAS  PubMed  Google Scholar 

  • Liu MT, Kuan YH, Wang J, Hen R, Gershon MD (2009) 5-HT4 receptor-mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice. J Neurosci 29:9683–9699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger M, Bareiss PM, Danker T, Wagner S, Hennenlotter J, Guenther E, Obermayr F, Stenzl A, Koenigsrainer A, Skutella T, Just L (2009) Expansion and differentiation of neural progenitors derived from the human adult enteric nervous system. Gastroenterology 137:e2064

    Article  Google Scholar 

  • Mizuno Y, Ohama E, Hirato J, Nakazato Y, Takahashi H, Takatama M, Takeuchi T, Okamoto K (2006) Nestin immunoreactivity of Purkinje cells in Creutzfeldt-Jakob disease. J Neurol Sci 246:131–137

    Article  CAS  PubMed  Google Scholar 

  • Mohseni P, Sung HK, Murphy AJ, Laliberte CL, Pallari HM, Henkelman M, Georgiou J, Xie G, Quaggin SE, Thorner PS, Eriksson JE, Nagy A (2011) Nestin is not essential for development of the CNS but required for dispersion of acetylcholine receptor clusters at the area of neuromuscular junctions. J Neurosci 31:11547–11552

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TL, Vieira-Silva S, Liston A, Raes J (2015) How informative is the mouse for human gut microbiota research? Dis Model Mech 8:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolte C, Matyash M, Pivneva T, Schipke CG, Ohlemeyer C, Hanisch UK, Kirchhoff F, Kettenmann H (2001) GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33:72–86

    Article  CAS  PubMed  Google Scholar 

  • Park D, Xiang AP, Mao FF, Zhang L, Di CG, Liu XM, Shao Y, Ma BF, Lee JH, Ha KS, Walton N, Lahn BT (2010) Nestin is required for the proper self-renewal of neural stem cells. Stem Cells 28:2162–2171

    Article  CAS  PubMed  Google Scholar 

  • Qu ZD, Thacker M, Castelucci P, Bagyanszki M, Epstein ML, Furness JB (2008) Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res 334:147–161

    Article  CAS  PubMed  Google Scholar 

  • Rauch U, Hansgen A, Hagl C, Holland-Cunz S, Schäfer KH (2005) Isolation and cultivation of neuronal precursor cells from the developing human enteric nervous system as a tool for cell therapy in dysganglionosis. Int J Color Dis 21:554–559

    Article  Google Scholar 

  • Rauch U, Klotz M, Maas-Omlor S, Wink E, Hansgen A, Hagl C, Holland-Cunz S, Schäfer KH (2006) Expression of intermediate filament proteins and neuronal markers in the human fetal gut. J Histochem Cytochem 54:39–46

    Article  CAS  PubMed  Google Scholar 

  • Rothman TP, Tennyson VM, Gershon MD (1986) Colonization of the bowel by the precursors of enteric glia: studies of normal and congenitally aganglionic mutant mice. J Comp Neurol 252:493–506

    Article  CAS  PubMed  Google Scholar 

  • Schäfer KH, Van Ginneken C, Copray S (2009) Plasticity and neural stem cells in the enteric nervous system. Anat Rec 292:1940–1952

    Article  Google Scholar 

  • Semar S, Klotz M, Letiembre M, Van Ginneken C, Braun A, Jost V, Bischof M, Lammers WJ, Liu Y, Fassbender K, Wyss-Coray T, Kirchhoff F, Schäfer KH (2013) Changes of the enteric nervous system in amyloid-beta protein precursor transgenic mice correlate with disease progression. J Alzheimer’s Dis 36:7–20

    CAS  Google Scholar 

  • Stewart HJ, Cowen T, Curtis R, Wilkin GP, Mirsky R, Jessen KR (1992) GAP-43 immunoreactivity is widespread in the autonomic neurons and sensory neurons of the rat. Neuroscience 47:673–684

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Rodriguez R, Belkind-Gerson J (2004) Cultured nestin-positive cells from postnatal mouse small bowel differentiate ex vivo into neurons, glia, and smooth muscle. Stem Cells 22:1373–1385

    Article  PubMed  Google Scholar 

  • Tsujimura T, Makiishi-Shimobayashi C, Lundkvist J, Lendahl U, Nakasho K, Sugihara A, Iwasaki T, Mano M, Yamada N, Yamashita K, Toyosaka A, Terada N (2001) Expression of the intermediate filament nestin in gastrointestinal stromal tumors and interstitial cells of Cajal. Am J Pathol 158:817–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uesaka T, Nagashimada M, Enomoto H (2015) Neuronal differentiation in schwann cell lineage underlies postnatal neurogenesis in the enteric nervous system. J Neurosci 35:9879–9888

    Article  CAS  PubMed  Google Scholar 

  • Vanderwinden JM, Gillard K, De Laet MH, Messam CA, Schiffmann SN (2002) Distribution of the intermediate filament nestin in the muscularis propria of the human gastrointestinal tract. Cell Tissue Res 309:261–268

    Article  CAS  PubMed  Google Scholar 

  • Villanacci V, Bassotti G, Nascimbeni R, Antonelli E, Cadei M, Fisogni S, Salerni B, Geboes K (2008) Enteric nervous system abnormalities in inflammatory bowel diseases. Neurogastroenterol Motil 20:1009–1016

    Article  CAS  PubMed  Google Scholar 

  • von Boyen G, Steinkamp M (2011) The role of enteric glia in gut inflammation. Neuron Glia Biol 6:231–236

    Article  Google Scholar 

  • Yamaguchi M, Saito H, Suzuki M, Mori K (2000) Visualization of neurogenesis in the central nervous system using nestin promoter-GFP transgenic mice. Neuroreport 11:1991–1996

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Yang J, Bian W, Jing N (2001) Mouse nestin protein localizes in growth cones of P19 neurons and cerebellar granule cells. Neurosci Lett 302:89–92

    Article  CAS  PubMed  Google Scholar 

  • Young HM, Bergner AJ, Muller T (2003) Acquisition of neuronal and glial markers by neural crest-derived cells in the mouse intestine. J Comp Neurol 456:1–11

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Grundmann or Karl-Herbert Schäfer.

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), grant number SCHA 878/3-1.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grundmann, D., Markwart, F., Scheller, A. et al. Phenotype and distribution pattern of nestin-GFP-expressing cells in murine myenteric plexus. Cell Tissue Res 366, 573–586 (2016). https://doi.org/10.1007/s00441-016-2476-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2476-9

Keywords

Navigation