Skip to main content

Advertisement

Log in

Two- and three-dimensional co-culture models of soft tissue healing: pericyte-endothelial cell interaction

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The demographic change in western countries towards an older population is being shadowed by an increased appearance of chronic diseases influencing soft tissue healing in a negative manner. Although various promising therapeutic approaches are available for treating chronic wounds, no in vitro model exists that successfully allows the analysis of interacting cells and of the effect of therapeutic drugs within a wound. Granulation tissue assures wound stability, neo-angiogenesis and revascularization finally leading to functional soft tissue repair. As one of the first steps in developing a model for human granulation tissue, we examined microvascular endothelial cells and pericytes in conventional 2D and in 3D spheroid co-cultures. We determined which parameters could be used in a standardized manner and whether the cultures were responsive to hypoxia and to erythropoietin supplementation. The read-out parameters of cell migration, cell density, rate of apoptotic cells, spatial cell distribution in the spheroid and spheroid volume were shown to be excellent analytic measures. In addition, quantification of hypoxia-related genes identified a total of 13 genes that were up-regulated in spheroids after hypoxia. As these parameters delivered reliable results in the present approach and as the general morphological distribution of pericytes and endothelial cells within the spheroid occurred in a typical manner, we believe that this basic in vitro model will serve for the future study of diverse aspects of soft tissue healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham D, Distler O (2007) How does endothelial cell injury start? The role of endothelin in systemic sclerosis. Arthritis Res Ther 9:S2

    Article  PubMed  PubMed Central  Google Scholar 

  • Achilli TM, Meyer J, Morgan JR (2012) Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther 12:1347–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augstein A, Poitz DM, Braun-Dullaeus RC, Strasser RH, Schmeisser A (2011) Cell-specific and hypoxia-dependent regulation of human HIF-3α: inhibition of the expression of HIF target genes in vascular cells. Cell Mol Life Sci 68:2627–2642

    Article  CAS  PubMed  Google Scholar 

  • Bek MJ, Wahle S, Müller B, Benzing T, Huber TB, Kretzler M, Cohen C, Busse-Grawitz A, Pavenstädt H (2003) Stra13, a prostaglandin E2-induced gene, regulates the cellular redox state of podocytes. FASEB J 17:682–684

    CAS  PubMed  Google Scholar 

  • Bello YM, Falabella AF, Eaglstein WH (2001) Tissue-engineered skin. Current status in wound healing. Am J Clin Dermatol 2:305–313

    Article  CAS  PubMed  Google Scholar 

  • Bou-Gharios G, Ponticos M, Rajkumar V, Abraham D (2004) Extra-cellular matrix in vascular networks. Cell Prolif 37:207–220

    Article  CAS  PubMed  Google Scholar 

  • Breit S, Bubel M, Pohlemann T, Oberringer M (2011) Erythropoietin ameliorates the reduced migration of human fibroblasts during in vitro hypoxia. J Physiol Biochem 67:1–13

    Article  CAS  PubMed  Google Scholar 

  • Busuioc CJ, Mogosanu GD, Popescu FC, Lascar I, Parvanescu H, Mogoanta L (2013) Phases of the cutaneous angiogenesis process in experimental third-degree skin burns: histological and immunohistochemical study. Rom J Morphol Embryol 54:163–171

    PubMed  Google Scholar 

  • Cechowska-Pasko M, Surazyński A, Bańkowski E (2009) The effect of glucose deprivation on collagen synthesis in fibroblast cultures. Mol Cell Biochem 327:211–218

    Article  CAS  PubMed  Google Scholar 

  • Chang WG, Andrejecsk JW, Kluger MS, Saltzman WM, Pober JS (2013) Pericytes modulate endothelial sprouting. Cardiovasc Res 100:492–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi JA, Hwang JU, Yoon YH, Koh JY (2013) Methallothionein-3 contributes to vascular endothelial growth factor induction in a mouse model of choroidal neovascularization. Metallomics 5:1387–1396

    Article  CAS  PubMed  Google Scholar 

  • Chong HC, Chan JS, Goh CQ, Gounko NV, Luo B, Wang X, Foo S, Wong MT, Choong C, Kersten S, Tan NS (2014) Angiopoietin-like 4 stimulates STAT3-mediated iNOS expression and enhances angiogenesis to accelerate wound healing in diabetic mice. Mol Ther 22:1593–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289

    Article  CAS  PubMed  Google Scholar 

  • Dohgu S, Banks WA (2013) Brain pericytes increase the lipopolysaccharide-enhanced transcytosis of HIV-1 free virus across the in vitro blood–brain barrier: evidence for cytokine-mediated pericyte-endothelial cell crosstalk. Fluids Barriers CNS 10:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorst N, Oberringer M, Grässer U, Pohlemann T, Metzger W (2014) Analysis of cellular composition of co-culture spheroids. Ann Anat 196:303–311

    Article  PubMed  Google Scholar 

  • Duffield JS, Lupher M, Thannickal VJ, Wynn TA (2013) Host responses in tissue repair and fibrosis. Annu Rev Pathol Mech Dis 8:241–276

    Article  CAS  Google Scholar 

  • Dulmovits BM, Herman IM (2012) Microvascular remodeling and wound healing: a role for pericytes. Int J Biochem Cell Biol 11:1800–1812

    Article  Google Scholar 

  • Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E (2003) HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res 534:65–75

    Article  CAS  PubMed  Google Scholar 

  • Fennema E, Rivron N, Rouwkema J, Blitterswijk C van, Boer J de (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31:108–111

  • Fong GH (2008) Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis 11:121–140

    Article  PubMed  Google Scholar 

  • Fukai T, Ushio-Fukai M (2006) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15:1583–1606

    Article  Google Scholar 

  • Galeano M, Altavilla D, Bitto A, Minutoli L, Calò M, Lo Cascio P, Polito F, Giugliano G, Squadrito G, Mioni C, Giuliani D, Venuti FS, Squadrito F (2006) Recombinant human erythropoietin improves angiogenesis and wound healing in experimental burn wounds. Crit Care Med 34:1139–1146

    Article  CAS  PubMed  Google Scholar 

  • Geevarghese A, Herman IM (2014) Pericyte-endothelial crosstalk: implications and opportunities for advanced cellular therapies. Transl Res 163:296–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Germain S, Monnot C, Muller L, Eichmann A (2010) Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding. Curr Opin Hematol 17:245–251

    CAS  PubMed  Google Scholar 

  • Gimm T, Wiese M, Teschemacher B, Deggerich A, Schödel J, Knaup KX, Hackenbeck T, Hellerbrand C, Amann K, Wiesener MS, Höning S, Eckardt KU, Warnecke C (2010) Hypoxia-inducible protein 2 is a novel lipid droplet protein and a specific target gene of hypoxia-inducible factor-1. FASEB J 24:4443–4458

    Article  CAS  PubMed  Google Scholar 

  • Gosain A, DiPietro LA (2004) Aging and wound healing. World J Surg 28:321–326

    Article  PubMed  Google Scholar 

  • Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224

    Article  CAS  PubMed  Google Scholar 

  • Grochot-Przeczek A, Lach R, Mis J, Skrzypek K, Gozdecka M, Sroczynska P, Dubiel M, Rutkowski A, Kozakowska M, Zagorska A, Walczynski J, Was H, Kotlinowski J, Drukala J, Kurowski K, Kieda C, Herault Y, Dulak J, Jozkowicz A (2009) Heme oxygenase-1 accelerates cutaneous wound healing in mice. PLoS ONE 4:e5803

    Article  PubMed  PubMed Central  Google Scholar 

  • Grochot-Przeczek A, Kotlinowski J, Kozakowska M, Starowicz K, Jagodzinska J, Stachurska A, Volger OL, Bukowska-Strakova K, Florczyk U, Tertil M, Jazwa A, Szade K, Stepniewski J, Loboda A, Horrevoets AJ, Dulak J, Jozkowicz A (2014) Heme oxygenase-1 is required for angiogenic function of bone marrow-derived progenitor cells: role in therapeutic revascularization. Antioxid Redox Signal 20:1677–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Li SY, Ji FY, Zhao YF, Zhong Y, Lv XJ, Wu XL, Qian GS (2014) Role of Angptl4 in vascular permeability and inflammation. Inflamm Res 63:13–22

    Article  CAS  PubMed  Google Scholar 

  • Haroon ZA, Amin K, Jiang X, Arcasoy MO (2003) A novel role for erythropoietin during fibrin induced wound-healing response. Am J Pathol 163:993–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasbak P, Sheykhzade M, Schifter S, Edvinsson L (2014) Potentiated adrenomedullin-induced vasorelaxation during hypoxia in organ cultured porcine coronary arteries. J Cardiovasc Pharmacol 63:58–67

    Article  CAS  PubMed  Google Scholar 

  • Heikkilä M, Pasanen A, Kivirikko KI, Myllyharju J (2011) Roles of the human hypoxia-inducible factor (HIF)-3α variants in the hypoxia response. Cell Mol Life Sci 68:3885–3901

    Article  PubMed  Google Scholar 

  • Heiss M, Hellström M, Kalén M, May T, Weber H, Hecker M, Augustin HG, Korff T (2015) Endothelial cell spheroids as a versatile tool to study angiogenesis in vitro. FASEB J 29:3076–3084

    Article  CAS  PubMed  Google Scholar 

  • Hirschi KK, D’Amore PA (1996) Pericytes in the microvasculature. Cardiovasc Res 32:687–698

    Article  CAS  PubMed  Google Scholar 

  • Hopf HW, Rollins MD (2007) Wounds: an overview of the role of oxygen. Antioxid Redox Signal 9:1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Hunt TK (1988) The physiology of wound healing. Ann Emerg Med 17:1265–1273

    Article  CAS  PubMed  Google Scholar 

  • Ioannidou E (2006) Therapeutic modulation of growth factors and cytokines in regenerative medicine. Curr Pharm Des 12:2397–2408

    Article  CAS  PubMed  Google Scholar 

  • Jacob MP, Badier-Commander C, Fontaine V, Benazzoug Y, Feldman L, Michel JB (2001) Extracellular matrix remodeling in the vascular wall. Pathol Biol 49:326–332

    Article  CAS  PubMed  Google Scholar 

  • Jin HO, An S, Lee HC, Woo SH, Seo SK, Choe TB, Yoo DH, Lee SB, Um HD, Lee SJ, Park MJ, Kim JI, Hong SI, Rhee CH, Park IC (2007) Hypoxic condition- and high cell density-induced expression of Redd1 is regulated by activation of hypoxia-inducible factor-1alpha and Sp1 through the phosphatidylinositol 3-kinase/Akt signaling pathway. Cell Signal 19:1393–1403

    Article  CAS  PubMed  Google Scholar 

  • Jin HO, Hong SE, Kim JH, Choi HN, Kim K, An S, Choe TB, Hwang CS, Lee JH, Kim JI, Kim HA, Kim EK, Noh WC, Hong YJ, Hong SI, Lee JK, Park IC (2013) Sustained overexpression of Redd1 leads to Akt activation involved in cell survival. Cancer Lett 336:319–324

    Article  CAS  PubMed  Google Scholar 

  • Kim HG, Hwang YP, Jeong HG (2008) Metallothionein-III induces HIF-1alpha-mediated VEGF expression in brain endothelial cells. Biochem Biophys Res Commun 369:666–671

    Article  CAS  PubMed  Google Scholar 

  • Knighton DR, Silver IA, Hunt TK (1981) Regulation of wound-healing angiogenesis-effect of oxygen gradients and inspired oxygen concentration. Surgery 90:262–270

    CAS  PubMed  Google Scholar 

  • Lazic T, Falanga V (2011) Bioengineered skin constructs and their use in wound healing. Plast Reconstr Surg 127(Suppl 1):75S–90S

    Article  CAS  PubMed  Google Scholar 

  • Lu N, Karlsen TV, Reed RK, Kusche-Gullberg M, Gullberg D (2014) Fibroblast alpha11beta1 integrin regulates tensional homeostasis in fibroblast/A549 carcinoma heterospheroids. PLoS ONE 9:e103173

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo J, Martinez J, Yin X, Sanchez A, Tripathy D, Grammas P (2012) Hypoxia induces angiogenic factors in brain microvascular endothelial cells. Microvasc Res 83:138–145

    Article  CAS  PubMed  Google Scholar 

  • Marxsen JH, Stengel P, Doege K, Heikkinen P, Jokilehto T, Wagner T, Jelkmann W, Jaakkola P, Metzen E (2004) Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases. Biochem J 381:761–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger W, Sossong D, Bächle A, Pütz N, Wennemuth G, Pohlemann T, Oberringer M (2011) The liquid overlay technique is the key to the formation of co-culture spheroids consisting of primary osteoblasts, fibroblasts and endothelial cells. Cytotherapy 13:1000–1012

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki K, Kawamoto T, Tanimoto K, Nishiyama M, Honda H, Kato Y (2002) Identification of functional hypoxia response elements in the promoter region of the DEC1 and DEC2 genes. J Biol Chem 277:47014–47021

    Article  CAS  PubMed  Google Scholar 

  • Neurath KM, Keough MP, Mikkelsen T, Claffey KP (2006) AMP-dependent protein kinase alpha 2 isoform promotes hypoxia-induced VEGF expression in human glioblastoma. Glia 53:733–743

    Article  PubMed  Google Scholar 

  • Oberringer M, Meins C, Bubel M, Pohlemann T (2007) A new in vitro wound model based on the co-culture of human dermal microvascular endothelial cells and human dermal fibroblasts. Biol Cell 99:197–207

    Article  CAS  PubMed  Google Scholar 

  • Perdiguero EG, Galaup A, Durand M, Teillon J, Philippe J, Valenzuela DM, Murphy AJ, Yancopoulos GD, Thurston G, Germain S (2011) Alteration of developmental and pathological retinal angiogenesis in angptl4-deficient mice. J Biol Chem 286:36841–36851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB (1999) Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 277:C1–C19

    Article  CAS  PubMed  Google Scholar 

  • Purins K, Enblad P, Sandhagen B, Lewén A (2010) Brain tissue oxygen monitoring: a study of in vitro accuracy and stability of neurovent-PTO and licox sensors. Acta Neurochir 152:681–688

    Article  PubMed  Google Scholar 

  • Rajasekaran SA, Rajasekaran AK (2009) Na, K-ATPase and epithelial tight junctions. Front Biosci (Landmark Ed) 14:2130–2148

    Article  CAS  Google Scholar 

  • Ribatti D, Presta M, Vacca A, Ria R, Giuliani R, Dell’Era P, Nico B, Roncali L, Dammacco F (1999) Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood 93:2627–2636

    CAS  PubMed  Google Scholar 

  • Ribatti D, Nico B, Spinazzi R, Vacca A, Nussdorfer GG (2005) The role of adrenomedullin in angiogenesis. Peptides 26:1670–1675

    Article  CAS  PubMed  Google Scholar 

  • Schlingemann RO, Rietveld FJ, Kwaspen F, Kerkhof PC van de, Waal RM de, Ruiter DJ (1991) Differential expression of markers for endothelial cells, pericytes, and basal lamina in the microvasculature of tumors and granulation tissue. Am J Pathol 138:1335–1347

  • Schneider G, Bubel M, Pohlemann T, Oberringer M (2015) Response of endothelial cells and pericytes to hypoxia and erythropoietin in a co-culture assay dedicated to soft tissue repair. Mol Cell Biochem 407:29–40

    Article  CAS  PubMed  Google Scholar 

  • Schulkens IA, Castricum KC, Weijers EM, Koolwijk P, Griffioen AW, Thijssen VL (2014) Expression, regulation and function of human metallothioneins in endothelial cells. J Vasc Res 51:231–238

    Article  CAS  PubMed  Google Scholar 

  • Schwarz F, Jennewein M, Bubel M, Holstein JH, Pohlemann T, Oberringer M (2013) Soft tissue fibroblasts from well healing and chronic human wounds show different rates of myofibroblasts in vitro. Mol Biol Rep 40:1721–1733

    Article  CAS  PubMed  Google Scholar 

  • Tamatani M, Matsuyama T, Yamaguchi A, Mitsuda N, Tsukamoto Y, Taniguchi M, Che YH, Ozawa K, Hori O, Nishimura H, Yamashita A, Okabe M, Yanagi H, Stern DM, Ogawa S, Tohyama M (2001) ORP150 protects against hypoxia/ischemia-induced neuronal death. Nat Med 7:317–323

    Article  CAS  PubMed  Google Scholar 

  • Tarallo S, Beltramo E, Berrone E, Porta M (2012) Human pericyte-endothelial cell interactions in co-culture models mimicking the diabetic retinal microvascular environment. Acta Diabetol 49(Suppl 1):S141–S151

    Article  PubMed  Google Scholar 

  • Widder M, Lutzkendorf J, Caysa H, Unverzagt S, Wickenhauser C, Benndorf RA, Schmoll HJ, Muller-Tidow C, Muller T, Muller LP (2016) Multipotent mesenchymal stromal cells promote tumor growth in distinct colorectal cancer cells by a β1-integrin-dependent mechanism. Int J Cancer 138:964–975

    Article  CAS  PubMed  Google Scholar 

  • Wirz W, Antoine M, Tag CG, Gressner AM, Korff T, Hellerbrand C, Kiefer P (2008) Hepatic stellate cells display a functional vascular smooth muscle cell phenotype in a three-dimensional co-culture model with endothelial cells. Differentiation 76:784-794

  • Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Oberringer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jennewein, M., Bubel, M., Guthörl, S. et al. Two- and three-dimensional co-culture models of soft tissue healing: pericyte-endothelial cell interaction. Cell Tissue Res 365, 279–293 (2016). https://doi.org/10.1007/s00441-016-2391-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2391-0

Keywords

Navigation