Skip to main content

Advertisement

Log in

Tyrosine hydroxylase immunoreactivity is common in the enteric nervous system in teleosts

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the synthesis of catecholamines and TH immunoreactivity is indicative of cells synthesising either adrenaline/noradrenaline or dopamine. In this study, the distribution of TH immunoreactivity was examined in two distantly related teleost species, zebrafish (Danio rerio) and shorthorn sculpin (Myoxocephalus scorpius). In both species, TH-immunoreactive nerve cell bodies and varicose nerve fibres were common in the myenteric plexus of the intestine. However, no TH-immunoreactive nerve cell bodies were seen in the sculpin stomach. The TH-immunoreactive nerve cell bodies seemed to constitute a larger proportion of the total enteric population in shorthorn sculpin (50 ± 5 %, n = 3067 cells) compared with zebrafish (14 ± 2 %, n = 10,163 cells). In contrast, in sculpin, the TH-immunoreactive cells were smaller than the average enteric nerve cell bodies, whereas in zebrafish, the relationship was the opposite. In developing zebrafish larvae, TH-immunoreactive nerve cell bodies were common (approx. 75 % of the total population) at 3 days post-fertilization (dpf), but decreased in numbers between 3 and 7 dpf. In conclusion, in contrast to previous studies, TH-immunoreactive intrinsic neurons are common in the fish gut. Their role and function need to be further characterized in order to understand the potential importance of this enteric subpopulation in controlling various gut functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anlauf M, Schafer MK, Eiden L, Weihe E (2003) Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. J Comp Neurol 459:90–111

    Article  CAS  PubMed  Google Scholar 

  • Baetge G, Gershon MD (1989) Transient catecholaminergic (TC) cells in the vagus nerves and bowel of fetal mice: relationship to the development of enteric neurons. Dev Biol 132:189–211

    Article  CAS  PubMed  Google Scholar 

  • Baetge G, Pintar JE, Gershon MD (1990) Transiently catecholaminergic (TC) cells in the bowel of the fetal rat: precursors of noncatecholaminergic enteric neurons. Dev Biol 141:353–380

    Article  CAS  PubMed  Google Scholar 

  • Baumgarten HG, Björklund A, Lachenmayer L, Nobin A, Rosengren E (1973) Evidence for the existence of serotonin-, dopamine-, and noradrenaline-containing neurons in the gut of Lampetra fluviatilis. Z Zellforsch Mikrosk Anat 141:33–54

    Article  CAS  PubMed  Google Scholar 

  • Belai A, Boulos PB, Robson T, Burnstock G (1997) Neurochemical coding in the small intestine of patients with Crohn's disease. Gut 40:767–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett T, Malmfors T, Cobb JL (1973) Fluorescence histochemical observations on catecholamine-containing cell bodies in Auerbach's plexus. Z Zellforsch Mikrosk Anat 139:69–81

    Article  CAS  PubMed  Google Scholar 

  • Bricaud O, Chaar V, Dambly-Chaudiere C, Ghysen A (2001) Early efferent innervation of the zebrafish lateral line. J Comp Neurol 434:253–261

    Article  CAS  PubMed  Google Scholar 

  • Browning KN, Cunningham SM, Duncan L, Timmermans J, Lees GM (1999) Regional differences in the sympathetic innervation of the guinea pig large intestine by neuropeptide Y- and tyrosine hydroxylase-immunoreactive nerves of divergent extrinsic origin. J Comp Neurol 410:515–530

    Article  CAS  PubMed  Google Scholar 

  • Campbell G, Gannon BJ (1976) The splanchnic nerve supply to the stomach of the trout, Salmo trutta and S. gairdneri. Comp Biochem Physiol C 55:51–53

    Article  CAS  PubMed  Google Scholar 

  • Candy J, Collet C (2005) Two tyrosine hydroxylase genes in teleosts. Biochim Biophys Acta 1727:35–44

    Article  CAS  PubMed  Google Scholar 

  • Chen YC, Priyadarshini M, Panula P (2009) Complementary developmental expression of the two tyrosine hydroxylase transcripts in zebrafish. Histochem Cell Biol 132:375–381

    Article  CAS  PubMed  Google Scholar 

  • Chevalier J, Derkinderen P, Gomes P, Thinard R, Naveilhan P, Vanden Berghe P, Neunlist M (2008) Activity-dependent regulation of tyrosine hydroxylase expression in the enteric nervous system. J Physiol 586:1963–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa M, Furness JB (1973) The origins of the adrenergic fibres which innervate the internal anal sphincter, the rectum, and other tissues of the pelvic region in the guinea-pig. Z Anat Entwicklungsgesch 140:129–142

    Article  CAS  PubMed  Google Scholar 

  • Costa M, Gabella G (1971) Adrenergic innervation of the alimentary canal. Z Zellforsch Mikrosk Anat 122:357–377

    Article  CAS  PubMed  Google Scholar 

  • De Ponti F, Giaroni C, Cosentino M, Lecchini S, Frigo G (1996) Adrenergic mechanisms in the control of gastrointestinal motility: from basic science to clinical applications. Pharmacol Ther 69:59–78

    Article  PubMed  Google Scholar 

  • Domeneghini C, Radaelli G, Arrighi S, Mascarello F, Veggetti A (2000) Neurotransmitters and putative neuromodulators in the gut of Anguilla anguilla (L.). Localizations in the enteric nervous and endocrine systems. Eur J Histochem 44:295–306

    CAS  PubMed  Google Scholar 

  • Filippi A, Mahler J, Schweitzer J, Driever W (2010) Expression of the paralogous tyrosine hydroxylase encoding genes th1 and th2 reveals the full complement of dopaminergic and noradrenergic neurons in zebrafish larval and juvenile brain. J Comp Neurol 518:423–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finney JL, Robertson GN, McGee CA, Smith FM, Croll RP (2006) Structure and autonomic innervation of the swim bladder in the zebrafish (Danio rerio). J Comp Neurol 495:587–606

    Article  CAS  PubMed  Google Scholar 

  • Furness JB (1970) The origin and distribution of adrenergic nerve fibres in the guinea-pig colon. Histochemie 21:295–306

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Costa M (1971) Morphology and distribution of intrinsic adrenergic neurones in the proximal colon of the guinea-pig. Z Zellforsch Mikrosk Anat 120:346–363

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Costa M (1974) The adrenergic innervation of the gastrointestinal tract. Ergeb Physiol 69:2–51

    CAS  PubMed  Google Scholar 

  • Gershon MD, Rothman TP, Joh TH, Teitelman GN (1984) Transient and differential expression of aspects of the catecholaminergic phenotype during development of the fetal bowel of rats and mice. J Neurosci 4:2269–2280

    CAS  PubMed  Google Scholar 

  • Gräns A, Olsson C (2011) Gut motility In: Farrell AP, Stevens ED (eds) Encyclopedia of fish physiology: from genome to environment. Gut Anatomy and Physiology. Elsevier, Amsterdam

  • Holmgren S, Olsson C (2010) Nervous system of the gut In: Farrell AP, Stevens ED (eds) Encyclopedia of fish physiology: from genome to environment. Gut Anatomy and Physiology. Elsevier, Amsterdam

  • Holzschuh J, Ryu S, Aberger F, Driever W (2001) Dopamine transporter expression distinguishes dopaminergic neurons from other catecholaminergic neurons in the developing zebrafish embryo. Mech Dev 101:237–243

    Article  CAS  PubMed  Google Scholar 

  • Jaber M, Jones S, Giros B, Caron MG (1997) The dopamine transporter: a crucial component regulating dopamine transmission. Mov Disord 12:629–633

    Article  CAS  PubMed  Google Scholar 

  • Kaslin J, Panula P (2001) Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). J Comp Neurol 440:342–377

    Article  CAS  PubMed  Google Scholar 

  • Kirschstein T, Dammann F, Klostermann J, Rehberg M, Tokay T, Schubert R, Kohling R (2009) Dopamine induces contraction in the proximal, but relaxation in the distal rat isolated small intestine. Neurosci Lett 465:21–26

    Article  CAS  PubMed  Google Scholar 

  • Kosterlitz HW, Lydon RJ, Watt AJ (1970) The effects of adrenaline, noradrenaline and isoprenaline on inhibitory alpha- and beta-adrenoceptors in the longitudinal muscle of the guinea-pig ileum. Br J Pharmacol 39:398–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni-Narla A, Beitz AJ, Brown DR (1999) Catecholaminergic, cholinergic and peptidergic innervation of gut-associated lymphoid tissue in porcine jejunum and ileum. Cell Tissue Res 298:275–286

    Article  CAS  PubMed  Google Scholar 

  • Lennington JB, Pope S, Goodheart AE, Drozdowicz L, Daniels SB, Salamone JD, Conover JC (2011) Midbrain dopamine neurons associated with reward processing innervate the neurogenic subventricular zone. J Neurosci 31:13078–13087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZS, Pham TD, Tamir H, Chen JJ, Gershon MD (2004) Enteric dopaminergic neurons: definition, developmental lineage, and effects of extrinsic denervation. J Neurosci 24:1330–1339

    Article  CAS  PubMed  Google Scholar 

  • Lomax AE, Sharkey KA, Furness JB (2010) The participation of the sympathetic innervation of the gastrointestinal tract in disease states. Neurogastroenterol Motil 22:7–18

    CAS  PubMed  Google Scholar 

  • Lundgren O (1988) Nervous control of intestinal fluid transport: physiology and pathophysiology. Comp Biochem Physiol A 90:603–609

    Article  CAS  PubMed  Google Scholar 

  • Mann R, Bell C (1993) Distribution and origin of aminergic neurones in dog small intestine. J Auton Nerv Syst 43:107–115

    Article  CAS  PubMed  Google Scholar 

  • McLean DL, Fetcho JR (2004) Ontogeny and innervation patterns of dopaminergic, noradrenergic, and serotonergic neurons in larval zebrafish. J Comp Neurol 480:38–56

    Article  PubMed  Google Scholar 

  • Nilsson S (1983) Autonomic nerve function in the vertebrates. Springer, Berlin

    Book  Google Scholar 

  • Nilsson S (2011) Comparative anatomy of the autonomic nervous system. Auton Neurosci Basic Clin 165:3–9

  • Norberg KA (1964) Adrenergic innervation of the intestinal wall studied by fluorescence microscopy. Int J Neuropharmacol 3:379–382

    Article  CAS  PubMed  Google Scholar 

  • Olsson C (2011) Calbindin immunoreactivity in the enteric nervous system of larval and adult zebrafish (Danio rerio). Cell Tissue Res 344:31–40

    Article  CAS  PubMed  Google Scholar 

  • Olsson C, Holmberg A, Holmgren S (2008) Development of enteric and vagal innervation of the zebrafish (Danio rerio) gut. J Comp Neurol 508:756–770

    Article  PubMed  Google Scholar 

  • Qu ZD, Thacker M, Castelucci P, Bagyanszki M, Epstein ML, Furness JB (2008) Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res 334:147–161

    Article  CAS  PubMed  Google Scholar 

  • Read JB, Burnstock G (1968a) Comparative histochemical studies of adrenergic nerves in the enteric plexuses of vertebrate large intestine. Comp Biochem Physiol 27:505–517

    Article  CAS  PubMed  Google Scholar 

  • Read JB, Burnstock G (1968b) Fluorescent histochemical studies on the mucosa of the vertebrate gastrointestinal tract. Histochemie 16:324–332

    Article  CAS  PubMed  Google Scholar 

  • Read JB, Burnstock G (1969a) Adrenergic innervation of the gut musculature in vertebrates. Histochemie 17:263–272

    Article  CAS  PubMed  Google Scholar 

  • Read JB, Burnstock G (1969b) A method for the localization of adrenergic nerves during early development. Histochemie 20:197–200

    Article  CAS  PubMed  Google Scholar 

  • Sandblom E, Olsson C, Davison W, Axelsson M (2010) Nervous and humoral catecholaminergic control of blood pressure and cardiac performance in the Antarctic fish Pagothenia borchgrevinki. Comp Biochem Physiol A 156:232–236

    Article  Google Scholar 

  • Sann H, Hoppe S, Baldwin L, Grundy D, Schemann M (1998) Presence of putative neurotransmitters in the myenteric plexus of the gastrointestinal tract and in the musculature of the urinary bladder of the ferret. Neurogastroenterol Mot 10:35–47

    Article  CAS  Google Scholar 

  • Santer RM, Holmgren S (1983) An ultrastructural and fluorescence histochemical study of the myenteric plexus of the stomach of the rainbow trout Salmo gairdneri. Acta Zool 64:55–66

    Article  Google Scholar 

  • Schemann M, Schaaf C, Mader M (1995) Neurochemical coding of enteric neurons in the guinea pig stomach. J Comp Neurol 353:161–178

    Article  CAS  PubMed  Google Scholar 

  • Straub RH, Wiest R, Strauch UG, Harle P, Scholmerich J (2006) The role of the sympathetic nervous system in intestinal inflammation. Gut 55:1640–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ungos JM, Karlstrom RO, Raible DW (2003) Hedgehog signaling is directly required for the development of zebrafish dorsal root ganglia neurons. Development 130:5351–5362

    Article  CAS  PubMed  Google Scholar 

  • Uyttebroek L, Shepherd IT, Harrisson F, Hubens G, Blust R, Timmermans JP, Van Nassauw L (2010) Neurochemical coding of enteric neurons in adult and embryonic zebrafish (Danio rerio). J Comp Neurol 518:4419–4438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakabayashi K, Takahashi H, Ohama E, Ikuta F (1989) Tyrosine hydroxylase-immunoreactive intrinsic neurons in the Auerbach's and Meissner's plexuses of humans. Neurosci Lett 96:259–263

    Article  CAS  PubMed  Google Scholar 

  • Watson AHD (1979) Fluorescent histochemistry of the teleost gut: evidence for the presence of serotonergic neurones. Cell Tissue Res 197:155–164

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges Mrs. Christina Hagström for expert technical assistance. The study was supported by the Swedish Science Research Council (621-2004-3936).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catharina Olsson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olsson, C. Tyrosine hydroxylase immunoreactivity is common in the enteric nervous system in teleosts. Cell Tissue Res 364, 231–243 (2016). https://doi.org/10.1007/s00441-015-2314-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2314-5

Keywords

Navigation