Skip to main content

Advertisement

Log in

Vascular stem/progenitor cells: current status of the problem

  • Mini Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Stem/progenitor cells residing in the vascular wall of post-natal vessels play a crucial role in angiogenesis and vascular regeneration after damage. There are four major populations of vascular-resident stem/progenitor cells with differentiated clonogenic and proliferative potential, namely mesenchymal stem cells, pericytes, endothelial progenitor cells, and smooth muscle progenitor cells. These progenitors reside in vascular stem cell niches, which are more likely to be in the adventitia, a vascular wall layer in which increased concentration of stem cell surface markers has been shown. Indeed, vascular resident progenitors are not uniformly distributed across the vessel wall and the circulatory system. The heterogeneity of such a distribution could contribute to the differentiated susceptibility of various vessel regions to chronic vascular diseases such as atherosclerosis. In cardiovascular pathology, adult vascular resident progenitors could play either a negative or a positive role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aicher A, Rentsch M, Sasaki K, Ellwart JW, Fändrich F, Siebert R, Cooke JP, Dimmeler S, Heeschen C (2007) Nonbone marrow-derived circulating progenitor cells contribute to postnatal neovascularization following tissue ischemia. Circ Res 100:581–589

    Article  CAS  PubMed  Google Scholar 

  • Andreeva ER, Pugach IM, Gordon D, Orekhov AN (1998) Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue Cell 30:127–135

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  • Atluri P, Miller JS, Emery RJ, Hung G, Trubelja A, Cohen JE, Lloyd K, Han J, Gaffey AC, MacArthur JW, Chen CS, Woo YJ (2014) Tissue-engineered, hydrogel-based endothelial progenitor cell therapy robustly revascularizes ischemic myocardium and preserves ventricular function. J Thorac Cardiovasc Surg 148:1090–1097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bearzi C, Leri A, Lo Monaco F, Rota M, Gonzalez A, Hosoda T, Pepe M, Qanud K, Ojaimi C, Bardelli S, D’Amario D, D’Alessandro DA, Michler RE, Dimmeler S, Zeiher AM, Urbanek K, Hintze TH, Kajstura J, Anversa P (2009) Identification of a coronary vascular progenitor cell in the human heart. Proc Natl Acad Sci U S A 106:15885–15890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bentzon JF, Sondergaard CS, Kassem M, Falk E (2007) Smooth muscle cells healing atherosclerotic plaque disruptions are of local, not blood, origin in apolipoprotein E knockout mice. Circulation 116:2053–2061

    Article  CAS  PubMed  Google Scholar 

  • Bobryshev YV, Tran D, Botelho NK, Lord RV, Orekhov AN (2011) Musashi-1 expression in atherosclerotic arteries and its relevance to the origin of arterial smooth muscle cells: histopathological findings and speculations. Atherosclerosis 215:355–365

    Article  CAS  PubMed  Google Scholar 

  • Campagnolo P, Cesselli D, Al Haj Zen A, Beltrami AP, Kränkel N, Katare R, Angelini G, Emanueli C, Madeddu P (2010) Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation 121:1735–1745

    Article  PubMed Central  PubMed  Google Scholar 

  • Campagnolo P, Wong MM, Xu Q (2011) Progenitor cells in arteriosclerosis: good or bad guys? Antioxid Redox Signal 15:1013–1027

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P (2003a) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P (2003b) Blood vessels and nerves: common signals, pathways and diseases. Nat Rev Genet 4:710–720

    Article  CAS  PubMed  Google Scholar 

  • Case J, Mead LE, Bessler WK, Prater D, White HA, Saadatzadeh MR, Bhavsar JR, Yoder MC, Haneline LS, Ingram DA (2007) Human CD34 + AC133 + VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 35:1109–1118

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wong MM, Campagnolo P, Simpson R, Winkler B, Margariti A, Hu Y, Xu Q (2013) Adventitial stem cells in vein grafts display multilineage potential that contributes to neointimal formation. Arterioscler Thromb Vasc Biol 33:1844–1851

    Article  CAS  PubMed  Google Scholar 

  • Cho HJ, Cho HJ, Lee HJ, Song MK, Seo JY, Bae YH, Kim JY, Lee HY, Lee W, Koo BK, Oh BH, Park YB, Kim HS (2013) Vascular calcifying progenitor cells possess bidirectional differentiation potentials. PLoS Biol 11, e1001534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Covas DT, Piccinato CE, Orellana MD, Siufi JL, Silva WA Jr, Proto-Siqueira R, Rizzatti EG, Neder L, Silva AR, Rocha V, Zago MA (2005) Mesenchymal stem cells can be obtained from the human saphena vein. Exp Cell Res 309:340–344

    Article  CAS  PubMed  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  • da Silva ML, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26:2287–2299

    Article  Google Scholar 

  • Davies PF, Civelek M, Fang Y, Fleming I (2013) The atherosusceptible endothelium: endothelial phenotypes in complex haemodynamic shear stress regions in vivo. Cardiovasc Res 99:315–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Díaz-Flores L, Gutiérrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martín-Vasallo P, Díaz-Flores L Jr (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24:909–969

    PubMed  Google Scholar 

  • Ergün S, Tilki D, Hohn HP, Gehling U, Kilic N (2007) Potential implications of vascular wall resident endothelial progenitor cells. Thromb Haemost 98:930–939

    PubMed  Google Scholar 

  • Fadini GP, de Kreutzenberg S, Agostini C, Boscaro E, Tiengo A, Dimmeler S, Avogaro A (2009) Low CD34+ cell count and metabolic syndrome synergistically increase the risk of adverse outcomes. Atherosclerosis 207:213–219

    Article  CAS  PubMed  Google Scholar 

  • Flammer AJ, Gössl M, Widmer RJ, Reriani M, Lennon R, Loeffler D, Shonyo S, Simari RD, Lerman LO, Khosla S, Lerman A (2012) Osteocalcin positive CD133+/CD34-/KDR+ progenitor cells as an independent marker for unstable atherosclerosis. Eur Heart J 33:2963–2969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • George J, Goldstein E, Abashidze S, Deutsch V, Shmilovich H, Finkelstein A, Herz I, Miller H, Keren G (2004) Circulating endothelial progenitor cells in patients with unstable angina: association with systemic inflammation. Eur Heart J 25:1003–1008

    Article  CAS  PubMed  Google Scholar 

  • Goldschmidt-Clermont PJ, Dong C, Seo DM, Velazquez OC (2012) Atherosclerosis, inflammation, genetics, and stem cells: 2012 update. Curr Atheroscler Rep 14:201–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grenier G, Scimè A, Le Grand F, Asakura A, Perez-Iratxeta C, Andrade-Navarro MA, Labosky PA, Rudnicki MA (2007) Resident endothelial precursors in muscle, adipose, and dermis contribute to postnatal vasculogenesis. Stem Cells 25:3101–3110

    Article  CAS  PubMed  Google Scholar 

  • Howson KM, Aplin AC, Gelati M, Alessandri G, Parati EA, Nicosia RF (2005) The postnatal rat aorta contains pericyte progenitor cells that form spheroidal colonies in suspension culture. Am J Physiol Cell Physiol 289:C1396–C1407

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Davison F, Ludewig B, Erdel M, Mayr M, Url M, Dietrich H, Xu Q (2002) Smooth muscle cells in transplant atherosclerotic lesions are originated from recipients, but not bone marrow progenitor cells. Circulation 106:1834–1839

    Article  PubMed  Google Scholar 

  • Hu Y, Davison F, Zhang Z, Xu Q (2003) Endothelial replacement and angiogenesis in arteriosclerotic lesions of allografts are contributed by circulating progenitor cells. Circulation 108:3122–3127

    Article  PubMed  Google Scholar 

  • Hu Y, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, Xu Q (2004) Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest 113:1258–1265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC (2005) Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 105:2783–2786

    Article  CAS  PubMed  Google Scholar 

  • Iwata H, Manabe I, Nagai R (2013) Lineage of bone marrow-derived cells in atherosclerosis. Circ Res 112:1634–1647

    Article  CAS  PubMed  Google Scholar 

  • Kirton JP, Xu Q (2010) Endothelial precursors in vascular repair. Microvasc Res 79:193–199

    Article  CAS  PubMed  Google Scholar 

  • Kumar AH, Metharom P, Schmeckpeper J, Weiss S, Martin K, Caplice NM (2010) Bone marrow-derived CX3CR1 progenitors contribute to neointimal smooth muscle cells via fractalkine CX3CR1 interaction. FASEB J 24:81–92

    Article  PubMed  Google Scholar 

  • Leone AM, Valgimigli M, Giannico MB, Zaccone V, Perfetti M, D’Amario D, Rebuzzi AG, Crea F (2009) From bone marrow to the arterial wall: the ongoing tale of endothelial progenitor cells. Eur Heart J 30:890–899

    Article  PubMed  Google Scholar 

  • Lin F, Wang N, Zhang TC (2012) The role of endothelial-mesenchymal transition in development and pathological process. IUBMB Life 64:717–723

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Leslie KL, Martin KA (2014) Epigenetic regulation of smooth muscle cell plasticity. Biochim Biophys Acta 1849:448–453

    Article  PubMed  Google Scholar 

  • Majka SM, Jackson KA, Kienstra KA, Majesky MW, Goodell MA, Hirschi KK (2003) Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration. J Clin Invest 111:71–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mayr M, Zampetaki A, Sidibe A, Mayr U, Yin X, De Souza AI, Chung YL, Madhu B, Quax PH, Hu Y, Griffiths JR, Xu Q (2008) Proteomic and metabolomic analysis of smooth muscle cells derived from the arterial media and adventitial progenitors of apolipoprotein E-deficient mice. Circ Res 102:1046–1056

    Article  CAS  PubMed  Google Scholar 

  • Merfeld-Clauss S, Lupov IP, Lu H, Feng D, Compton-Craig P, March KL, Traktuev DO (2014) Adipose stromal cells differentiate along a smooth muscle lineage pathway upon endothelial cell contact via induction of activin A. Circ Res 115:800–809

    Article  CAS  PubMed  Google Scholar 

  • Orekhov AN, Bobryshev YV, Chistiakov DA (2014) The complexity of cell composition of the intima of large arteries: focus on pericyte-like cells. Cardiovasc Res 103:438–451

    Article  CAS  PubMed  Google Scholar 

  • Padfield GJ, Newby DE, Mills NL (2010) Understanding the role of endothelial progenitor cells in percutaneous coronary intervention. J Am Coll Cardiol 55:1553–1565

    Article  PubMed  Google Scholar 

  • Pasquinelli G, Tazzari PL, Vaselli C, Foroni L, Buzzi M, Storci G, Alviano F, Ricci F, Bonafè M, Orrico C, Bagnara GP, Stella A, Conte R (2007) Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells 25:1627–1634

    Article  CAS  PubMed  Google Scholar 

  • Pasquinelli G, Pacilli A, Alviano F, Foroni L, Ricci F, Valente S, Orrico C, Lanzoni G, Buzzi M, Luigi Tazzari P, Pagliaro P, Stella A, Paolo Bagnara G (2010) Multidistrict human mesenchymal vascular cells: pluripotency and stemness characteristics. Cytotherapy 12:275–287

    Article  CAS  PubMed  Google Scholar 

  • Passman JN, Dong XR, Wu SP, Maguire CT, Hogan KA, Bautch VL, Majesky MW (2008) A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscleprogenitor cells. Proc Natl Acad Sci U S A 105:9349–9354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958

    CAS  PubMed  Google Scholar 

  • Psaltis PJ, Harbuzariu A, Delacroix S, Holroyd EW, Simari RD (2011) Resident vascular progenitor cells - diverse origins, phenotype, and function. J Cardiovasc Transl Res 4:161–176

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodriguez-Menocal L, St-Pierre M, Wei Y, Khan S, Mateu D, Calfa M, Rahnemai-Azar AA, Striker G, Pham SM, Vazquez-Padron RI (2009) The origin of post-injury neointimal cells in the rat balloon injury model. Cardiovasc Res 81:46–53

    Article  CAS  PubMed  Google Scholar 

  • Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809

    Article  CAS  PubMed  Google Scholar 

  • Sainz J, Al Haj Zen A, Caligiuri G, Demerens C, Urbain D, Lemitre M, Lafont A (2006) Isolation of “side population” progenitor cells from healthy arteries of adult mice. Arterioscler Thromb Vasc Biol 26:281–286

    Article  CAS  PubMed  Google Scholar 

  • Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H, Makuuchi M, Hirata Y, Nagai R (2002) Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 8:403–409

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Lucke C, Rössig L, Fichtlscherer S, Vasa M, Britten M, Kämper U, Dimmeler S, Zeiher AM (2005) Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 111:2981–2987

    Article  PubMed  Google Scholar 

  • Shao JS, Cai J, Towler DA (2006) Molecular mechanisms of vascular calcification: lessons learned from the aorta. Arterioscler Thromb Vasc Biol 26:1423–1430

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704

    Article  PubMed  Google Scholar 

  • Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367

    CAS  PubMed  Google Scholar 

  • Tavian M, Zheng B, Oberlin E, Crisan M, Sun B, Huard J, Peault B (2005) The vascular wall as a source of stem cells. Ann N Y Acad Sci 1044:41–50

    Article  PubMed  Google Scholar 

  • Timmermans F, Plum J, Yöder MC, Ingram DA, Vandekerckhove B, Case J (2009) Endothelial progenitor cells: identity defined? J Cell Mol Med 13:87–102

    Article  PubMed Central  PubMed  Google Scholar 

  • Tintut Y, Alfonso Z, Saini T, Radcliff K, Watson K, Boström K, Demer LL (2003) Multilineage potential of cells from the artery wall. Circulation 108:2505–2510

    Article  PubMed  Google Scholar 

  • Torsney E, Hu Y, Xu Q (2005) Adventitial progenitor cells contribute to arteriosclerosis. Trends Cardiovasc Med 15:64–68

    Article  CAS  PubMed  Google Scholar 

  • van Oostrom O, Fledderus JO, de Kleijn D, Pasterkamp G, Verhaar MC (2009) Smooth muscle progenitor cells: friend or foe in vascular disease? Curr Stem Cell Res Ther 4:131–140

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang CH, Cherng WJ, Yang NI, Hsu CM, Yeh CH, Lan YJ, Wang JS, Verma S (2008) Cyclosporine increases ischemia-induced endothelial progenitor cell mobilization through manipulation of the CD26 system. Am J Physiol Regul Integr Comp Physiol 294:R811–R818

    Article  CAS  PubMed  Google Scholar 

  • Werner N, Junk S, Laufs U, Link A, Walenta K, Bohm M, Nickenig G (2003) Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res 93:e17–e24

    Article  CAS  PubMed  Google Scholar 

  • Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Böhm M, Nickenig G (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoon CH, Hur J, Park KW, Kim JH, Lee CS, Oh IY, Kim TY, Cho HJ, Kang HJ, Chae IH, Yang HK, Oh BH, Park YB, Kim HS (2005) Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation 112:1618–1627

    Article  PubMed  Google Scholar 

  • Zengin E, Chalajour F, Gehling UM, Ito WD, Treede H, Lauke H, Weil J, Reichenspurner H, Kilic N, Ergün S (2006) Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development 133:1543–1551

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Xu Q (2014) Stem/progenitor cells in vascular regeneration. Arterioscler Thromb Vasc Biol 34:1114–1119

    Article  PubMed  Google Scholar 

  • Zhang C, Zeng L, Emanueli C, Xu Q (2013) Blood flow and stem cells in vascular disease. Cardiovasc Res 99:251–259

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We wish to thank the Russian Scientific Foundation (grant 14-15-00112), Russian Federation, for support of our work.

Disclosure statement

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri V. Bobryshev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobryshev, Y.V., Orekhov, A.N. & Chistiakov, D.A. Vascular stem/progenitor cells: current status of the problem. Cell Tissue Res 362, 1–7 (2015). https://doi.org/10.1007/s00441-015-2231-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2231-7

Keywords

Navigation