Skip to main content
Log in

miR-124 disinhibits neurite outgrowth in an inflammatory environment

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Lesions of the central nervous system elicit inflammatory responses that counteract the regeneration of neurites. Microglia and infiltrating macrophages that were activated by trauma have been identified as cellular sources of inhibitory factors. We examine cultured macrophage (RAW264.7) and neuronal (PC12) cell lines to ascertain the potential modulators of the inflammatory impact on neurons. By exposing quiescent macrophages to lipopolysaccharide (LPS) and interferon γ (IFN-γ), cells can be transformed into an activated M1 phenotype. Neurite extension was induced in PC12 cells by culturing them in the presence of nerve growth factor. Neurite outgrowth was quantified by analyzing immunofluorescence and phase contrast microscopy images. Activated macrophages significantly reduced neurite extension. Macrophage activation by LPS/IFN-γ induced a 1000-fold increase in tumor necrosis factor alpha (TNF-α) secretion, as quantified by enzyme-linked immunosorbent assays (ELISA). Recombinant TNF-α inhibited neurite formation at concentrations as low as 0.016 ng/ml. In contrast, the masking of TNF-α with specific functional antibodies abrogated neurite growth inhibition by activated macrophages. Taken together, these results indicated that TNF-α is a key component of inhibitory macrophage action. The transfection of PC12 neurons with microRNA-124 (miR-124) counteracted the inhibition of neurites mediated by both recombinant TNF-α and macrophages. miR-124 did not stimulate neurite formation per se, nor was cell viability affected. These data suggest that miR-124 might be a valuable tool for desensitizing neurons to a repulsive inflammatory environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bak M, Silahtaroglu A, Moller M, Christensen M, Rath MF, Skryabin B, Tommerup N, Kauppinen S (2008) MicroRNA expression in the adult mouse central nervous system. RNA 14:432–444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baudet ML, Zivraj KH, Abreu-Goodger C, Muldal A, Armisen J, Blenkiron C, Goldstein LD, Miska EA, Holt CE (2011) miR-124 acts through CoREST to control onset of Sema3A sensitivity in navigating retinal growth cones. Nat Neurosci 15:29–38

    Article  PubMed Central  PubMed  Google Scholar 

  • Biswas SK, Sodhi A (2002) In vitro activation of murine peritoneal macrophages by monocyte chemoattractant protein-1: upregulation of CD11b, production of proinflammatory cytokines, and the signal transduction pathway. J Interferon Cytokine Res 22:527–538

    Article  CAS  PubMed  Google Scholar 

  • Blight AR (1994) Effects of silica on the outcome from experimental spinal cord injury: implication of macrophages in secondary tissue damage. Neuroscience 60:263–273

    Article  CAS  PubMed  Google Scholar 

  • Boschmann M, Engeli S, Adams F, Gorzelniak K, Franke G, Klaua S, Kreuzberg U, Luedtke S, Kettritz R, Sharma AM, Luft FC, Jordan J (2005) Adipose tissue metabolism and CD11b expression on monocytes in obese hypertensives. Hypertension 46:130–136

    Article  CAS  PubMed  Google Scholar 

  • Bristol JA, Morrison TE, Kenney SC (2009) CCAAT/enhancer binding proteins α and β regulate the tumor necrosis factor receptor 1 gene promoter. Mol Immunol 46:2706–2713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Donnelly DJ, Longbrake EE, Shawler TM, Kigerl KA, Lai W, Tovar CA, Ransohoff RM, Popovich PG (2011) Deficient CX3CR1 signaling promotes recovery after mouse spinal cord injury by limiting the recruitment and activation of Ly6Clo/iNOS+ macrophages. J Neurosci 31:9910–9922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA, Sheng M (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65:373–384

    Article  CAS  PubMed  Google Scholar 

  • Franke K, Otto W, Johannes S, Baumgart J, Nitsch R, Schumacher S (2012) miR-124-regulated RhoG reduces neuronal process complexity via ELMO/Dock180/Rac1 and Cdc42 signalling. EMBO J 31:2908–2921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao Z, Zhu Q, Zhang Y, Zhao Y, Cai L, Shields CB, Cai J (2013) Reciprocal modulation between microglia and astrocyte in reactive gliosis following the CNS injury. Mol Neurobiol 48:690–701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gendelman HE (2002) Neural immunity: friend or foe? J Neurovirol 8:474–479

    Article  CAS  PubMed  Google Scholar 

  • George A, Buehl A, Sommer C (2004) Wallerian degeneration after crush injury of rat sciatic nerve increases endo- and epineurial tumor necrosis factor-alpha protein. Neurosci Lett 372:215–219

    Article  CAS  PubMed  Google Scholar 

  • Giulian D, Robertson C (1990) Inhibition of mononuclear phagocytes reduces ischemic injury in the spinal cord. Ann Neurol 27:33–42

    Article  CAS  PubMed  Google Scholar 

  • Golz G, Uhlmann L, Ludecke D, Markgraf N, Nitsch R, Hendrix S (2006) The cytokine/neurotrophin axis in peripheral axon outgrowth. Eur J Neurosci 24:2721–2730

    Article  PubMed  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Meng S, Liu S, Jia C, Fang Y, Li S, Fu C, Song Q, Lin L, Wang X (2014) miR-124 represses ROCK1 expression to promote neurite elongation through activation of the PI3K/Akt signal pathway. J Mol Neurosci 52:156–165

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Liu H, Kikuchi S, Myers RR, Shubayev VI (2010) Immediate anti-tumor necrosis factor-alpha (etanercept) therapy enhances axonal regeneration after sciatic nerve crush. J Neurosci Res 88:360–368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katoh H, Negishi M (2003) RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo. Nature 424:461–464

    Article  CAS  PubMed  Google Scholar 

  • Kaushal V, Schlichter LC (2008) Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J Neurosci 28:2221–2230

    Article  CAS  PubMed  Google Scholar 

  • Kiefer R, Kieseier BC, Stoll G, Hartung HP (2001) The role of macrophages in immune-mediated damage to the peripheral nervous system. Prog Neurobiol 64:109–127

    Article  CAS  PubMed  Google Scholar 

  • Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7:911–920

    Article  CAS  PubMed  Google Scholar 

  • Kozma R, Sarner S, Ahmed S, Lim L (1997) Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol Cell Biol 17:1201–1211

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krichevsky AM (2007) MicroRNA profiling: from dark matter to white matter, or identifying new players in neurobiology. ScientificWorldJournal 7:155–166

    Article  PubMed  Google Scholar 

  • Li Q, Bian S, Hong J, Kawase-Koga Y, Zhu E, Zheng Y, Yang L, Sun T (2011) Timing specific requirement of microRNA function is essential for embryonic and postnatal hippocampal development. PLoS ONE 6:e26000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  CAS  PubMed  Google Scholar 

  • May V, Schiller MR, Eipper BA, Mains RE (2002) Kalirin Dbl-homology guanine nucleotide exchange factor 1 domain initiates new axon outgrowths via RhoG-mediated mechanisms. J Neurosci 22:6980–6990

    CAS  PubMed  Google Scholar 

  • Miron VE, Franklin RJ (2014) Macrophages and CNS remyelination. J Neurochem (in press)

  • Nagata K, Hama I, Kiryu-Seo S, Kiyama H (2014) microRNA-124 is down regulated in nerve-injured motor neurons and it potentially targets mRNAs for KLF6 and STAT3. Neuroscience 256:426–432

    Article  CAS  PubMed  Google Scholar 

  • Neumann H, Schweigreiter R, Yamashita T, Rosenkranz K, Wekerle H, Barde YA (2002) Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by a rho-dependent mechanism. J Neurosci 22:854–862

    CAS  PubMed  Google Scholar 

  • Pappas TC, Decorti F, Macdonald NJ, Neet KE, Taglialatela G (2003) Tumour necrosis factor‐alpha‐vs. growth factor deprivation‐promoted cell death: different receptor requirements for mediating nerve growth factor‐promoted rescue. Aging Cell 2:83–92

    Article  CAS  PubMed  Google Scholar 

  • Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 17:64–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Popovich PG, Guan Z, Wei P, Huitinga I, van Rooijen N, Stokes BT (1999) Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol 158:351–365

    Article  CAS  PubMed  Google Scholar 

  • Sanuki R, Onishi A, Koike C, Muramatsu R, Watanabe S, Muranishi Y, Irie S, Uneo S, Koyasu T, Matsui R, Cherasse Y, Urade Y, Watanabe D, Kondo M, Yamashita T, Furukawa T (2011) miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nat Neurosci 14:1125–1134

    Article  CAS  PubMed  Google Scholar 

  • Saville LR, Pospisil CH, Mawhinney LA, Bao F, Simedrea FC, Peters AA, O’Connell PJ, Weaver LC, Dekaban GA (2004) A monoclonal antibody to CD11d reduces the inflammatory infiltrate into the injured spinal cord: a potential neuroprotective treatment. J Neuroimmunol 156:42–57

    Article  CAS  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Schumacher S, Franke K (2013) miR-124-regulated RhoG. Small GTPases 4

  • Smirnova L, Grafe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21:1469–1477

    Article  PubMed  Google Scholar 

  • Sun Y, Li Q, Gui H, Xu D-P, Yang Y-L, Su D-F, Liu X (2013) MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines. Cell Res

  • Wu D, Murashov AK (2013) Molecular mechanisms of peripheral nerve regeneration: emerging roles of microRNAs. Front Physiol 4:55

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu D, Raafat M, Pak E, Hammond S, Murashov AK (2011) MicroRNA machinery responds to peripheral nerve lesion in an injury-regulated pattern. Neuroscience 190:386–397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu JY, Chung KH, Deo M, Thompson RC, Turner DL (2008) MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res 314:2618–2633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to M. Baur, S. Liebler, L. Schuster, A. Stotz, T. Aberle, (NMI Reutlingen, Germany), P. Kingham and M. Wiberg (IMB, Umea, Sweden) and J. Kjems (iNano, Aarhus, Denmark) for scientific and technical assistance. Partially funded by EU/BMBF Nano4Neuro 13N11036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Schlosshauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartmann, H., Hoehne, K., Rist, E. et al. miR-124 disinhibits neurite outgrowth in an inflammatory environment. Cell Tissue Res 362, 9–20 (2015). https://doi.org/10.1007/s00441-015-2183-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2183-y

Keywords

Navigation