Skip to main content
Log in

Expression of ectonucleotidases in the prosencephalon of melatonin-proficient C3H and melatonin-deficient C57Bl mice: spatial distribution and time-dependent changes

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Extracellular purines (ATP, ADP, AMP and adenosine) are important signaling molecules in the CNS. Levels of extracellular purines are regulated by enzymes located at the cell surface referred to as ectonucleotidases. Time-dependent changes in their expression could profoundly influence the availability of extracellular purines and thereby purinergic signaling. Using radioactive in situ hybridization, we analyzed the mRNA distribution of the enzymes NTPDase1, -2 and -3 and ecto-5′-nucleotidase in the prosencephalon of two mouse strains: melatonin-proficient C3H and melatonin-deficient C57Bl. The mRNAs of these enzymes were localized to specific brain regions, such as hippocampus, striatum, medial habenula and ventromedial hypothalamus. NTPDase3 expression was more widely distributed than previously thought. All ectonucleotidases investigated revealed a prominent time-dependent expression pattern. In C3H, the mRNA expression of all four enzymes gradually increased during the day and peaked during the night. In contrast, in C57Bl, ecto-5′-nucleotidase expression peaked at the beginning of the day and gradually decreased to trough levels at night. Recording of locomotor activity revealed higher daytime activity of C57Bl than of C3H. Our results indicate that the expression of ectonucleotidases varies according to time and genotype and suggest that melatonin exerts modulatory effects associated with different regulations of purinergic signaling in the brain. These findings provide an important basis for further examination of the complexity of the purinergic system in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Anterodorsal thalamic nucleus

Arc:

Arcuate nucleus

AV:

Anteroventral thalamic nucleus

CA:

Cornu ammonis

CeC and CeL:

Capsular and lateral central amygdala

CeM:

Medial central amygdala

Cg:

Cingulate cortex

CP:

Choroid plexus

CT:

Circadian time

DG:

Dentate gyrus

Dk:

Nucleus of Darkschewitsch

DM:

Dorsomedial hypothalamic nucleus

eN:

Ecto-5′-nucleotidase

FC:

Fasciola cinerea

GP:

Globus pallidus

IG:

Indusium griseum

IPAC:

Interstitial nucleus of the posterior limb of the anterior commissure

ISH:

In situ hybridization

KO:

Knock out

LHb:

Lateral habenula

LV:

Lateral ventricle

MeP:

Posterior medial amygdala

MHb:

Medial habenula

NTPDase:

Nucleoside triphosphate diphosphohydrolase

Pir:

Piriform cortex

PMD:

Premammillary nucleus dorsal

PMV:

Premammillary nucleus ventral

Po:

Posterior thalamic nuclear group

PT:

Hypophysial pars tuberalis

PVA:

Anterior paraventricular thalamic nucleus

PVN:

Hypothalamic paraventricular nucleus

Rt:

Reticular thalamic nucleus

SCN:

Suprachiasmatic nucleus

SFO:

Subfornical organ

sm:

Stria medullaris

SN:

Substantia nigra

SON:

Supraoptic nucleus

STh:

Subthalamic nucleus

SVZ:

Subventricular zone

TS:

Triangular septal nucleus

3V:

Third ventricle

VMH:

Ventromedial hypothalamic nucleus

VP:

Ventral posterior thalamic nucleus

VPPC:

Ventral posterior parvicellular thalamic nucleus

WT:

Wild-type

ZI:

Zona incerta

References

  • Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29

    Article  CAS  PubMed  Google Scholar 

  • Ackermann H (1991) BIAS. A program package for biometrical analysis of samples. Comput Stat Data Anal 11:223–224 [current program version: 10.02 epsilon]

    Article  Google Scholar 

  • Augusto E, Matos M, Sevigny J, El-Tayeb A, Bynoe MS, Muller CE, Cunha RA, Chen J (2013) Ecto-5′-nucleotidase (CD73)-mediated formation of adenosine is critical for the striatal adenosine A2A receptor functions. J Neurosci 33:11390–11399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Belcher S, Zsarnovszky A, Crawford P, Hemani H, Spurling L, Kirley T (2006) Immunolocalization of ecto-nucleoside triphosphate diphosphohydrolase 3 in rat brain: implications for modulation of multiple homeostatic systems including feeding and sleep–wake behaviors. Neuroscience 137:1331–1346

    Article  CAS  PubMed  Google Scholar 

  • Bjelobaba I, Stojiljkovic M, Pekovic S, Dacic S, Lavrnja I, Stojkov D, Rakic L, Nedeljkovic N (2007) Immunohistological determination of ecto-nucleoside triphosphate diphosphohydrolase1 (NTPDase1) and 5′-nucleotidase in rat hippocampus reveals overlapping distribution. Cell Mol Neurobiol 27:731–743

    Article  CAS  PubMed  Google Scholar 

  • Braun N, Sévigny J, Robson SC, Enjyoji K, Guckelberger O, Hammer K, Di Virgilio F, Zimmermann H (2000) Assignment of ecto-nucleoside triphosphate diphosphohydrolase-1/cd39 expression to microglia and vasculature of the brain. Eur J Neurosci 12:4357–4366

    CAS  PubMed  Google Scholar 

  • Braun N, Sévigny J, Mishra SK, Robson SC, Barth SW, Gerstberger R, Hammer K, Zimmermann H (2003) Expression of the ecto-ATPase NTPDase2 in the germinal zones of the developing and adult rat brain. Eur J Neurosci 17:1355–1364

    Article  PubMed  Google Scholar 

  • Burnstock G (2006) Purinergic signalling. Br J Pharmacol 147(Suppl 1):172–181

    Google Scholar 

  • Burnstock G (2009) Purinergic signalling: past, present and future. Braz J Med Biol Res 42:3–8

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Verkhratsky A (2012) Purinergic signalling and the nervous system. Springer, Heidelberg

    Book  Google Scholar 

  • Chatterjee S, Thyagarajan K, Kesarwani P, Song JH, Soloshchenko M, Fu J, Bailey SR, Vasu C, Kraft AS, Paulos CM, Yu XZ, Mehrotra S (2014) Reducing CD73 expression by IL1β-Programmed Th17 cells improves immunotherapeutic control of tumors. Cancer Res 74:6048–6059

    Article  CAS  PubMed  Google Scholar 

  • Cunha RA, Brendel P, Zimmermann H, Ribeiro JA (2000) Immunologically distinct isoforms of ecto-5′-nucleotidase in nerve terminals of different areas of the rat hippocampus. J Neurochem 74:334–338

    Article  CAS  PubMed  Google Scholar 

  • Deaglio S, Robson SC (2011) Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity. Adv Pharmacol 61:301–332

    Article  CAS  PubMed  Google Scholar 

  • Detanico BC, de Souza A, Medeiros LF, Rozisky JR, Caumo W, Hidalgo MPL, Battastini AMO, Torres ILS (2010) 24-hour temporal pattern of NTPDase and 5′-nucleotidase enzymes in rat blood serum. Chronobiol Int 27:1751–1761

    Article  CAS  PubMed  Google Scholar 

  • Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    Article  CAS  PubMed  Google Scholar 

  • Ena SL, De Backer J, Schiffmann SN, de Kerchove d’Exaerde A (2013) FACS array profiling identifies ecto-5′ nucleotidase as a striatopallidal neuron-specific gene involved in striatal-dependent learning. J Neurosci 33:8794–8809

    Article  CAS  PubMed  Google Scholar 

  • Figueiró F, Mendes FB, Corbelini PF, Janarelli F, Jandrey EH, Russowsky D, Eifler-Lima VL, Battastini AM (2014) A monastrol-derived compound, LaSOM 63, inhibits ecto-5′nucleotidase/CD73 activity and induces apoptotic cell death of glioma cell lines. Anticancer Res 34:1837–1842

    PubMed  Google Scholar 

  • Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  • Gampe K, Hammer K, Kittel Á, Zimmermann H (2012) The medial habenula contains a specific nonstellate subtype of astrocyte expressing the ectonucleotidase NTPDase2. Glia 60:1860–1870

    Article  PubMed  Google Scholar 

  • Gampe K, Stefani J, Hammer K, Brendel P, Pötzsch A, Enikolopov G, Enjyoji K, Acker-Palmer A, Robson SC, Zimmermann H (2014) NTPDase2 and purinergic signaling control progenitor cell proliferation in neurogenic niches of the adult mouse brain. Stem Cells 33:253–264

    Article  Google Scholar 

  • Goto M, Matsuo H, Iigo M, Furuse M, Korf HW, Yasuo S (2013) Melatonin-induced changes in the expression of thyroid hormone-converting enzymes in hypothalamus depend on the timing of melatonin injections and genetic background in mice. Gen Comp Endocrinol 186:33–40

    Article  CAS  PubMed  Google Scholar 

  • Haskó G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25:33–39

    Article  PubMed  Google Scholar 

  • Korf HW, von Gall C (2006) Mice, melatonin and the circadian system. Mol Cell Endocrinol 252:57–68

    Article  CAS  PubMed  Google Scholar 

  • Korf HW, von Gall C, Stehle J (2003) The circadian system and melatonin: lessons from rats and mice. Chronobiol Int 20:697–710

    Article  CAS  PubMed  Google Scholar 

  • Kukulski F, Lévesque SA, Sévigny J (2011) Impact of ectoenzymes on p2 and p1 receptor signaling. Adv Pharmacol 61:263–299

    Article  CAS  PubMed  Google Scholar 

  • Kulesskaya N, Võikar V, Peltola M, Yegutkin GG, Salmi M, Jalkanen S, Rauvala H (2013) CD73 is a major regulator of adenosinergic signalling in mouse brain. PLoS ONE 8:e66896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Langer D, Hammer K, Koszalka P, Schrader J, Robson SC, Zimmermann H (2008) Distribution of ectonucleotidases in the rodent brain revisited. Cell Tissue Res 334:199–217

    Article  CAS  PubMed  Google Scholar 

  • Mackiewicz M, Nikonova EV, Zimmerman JE, Galante RJ, Zhang L, Cater JR, Geiger JD, Pack AI (2003) Enzymes of adenosine metabolism in the brain: diurnal rhythm and the effect of sleep deprivation. J Neurochem 85:348–357

    Article  CAS  PubMed  Google Scholar 

  • Mills JH, Thompson LF, Mueller C, Waickman AT, Jalkanen S, Niemela J, Airas L, Bynoe MS (2008) CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 105:9325–9330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mimee A, Smith PM, Ferguson AV (2013) Circumventricular organs: targets for integration of circulating fluid and energy balance signals? Physiol Behav 121:96–102

    Article  CAS  PubMed  Google Scholar 

  • Mutafova-Yambolieva VN, Durnin L (2014) The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 144:162–191

    Article  CAS  PubMed  Google Scholar 

  • Petrovic-Djergovic D, Hyman MC, Ray JJ, Bouis D, Visovatti SH, Hayasaki T, Pinsky DJ (2012) Tissue-resident ecto-5′ nucleotidase (CD73) regulates leukocyte trafficking in the ischemic brain. J Immunol 188:2387–2398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfeffer M, Rauch A, Korf HW, von Gall C (2012) The Endogenous Melatonin (MT) signal facilitates reentrainment of the circadian system to light-induced phase advances by acting upon MT2 receptors. Chronobiol Int 29:415–429

    Article  CAS  PubMed  Google Scholar 

  • Porkka-Heiskanen T, Strecker R, McCarley R (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99:507–517

    Article  CAS  PubMed  Google Scholar 

  • Radulovacki M (1985) Role of adenosine in sleep in rats. Rev Clin Basic Pharm 5:327–339

    CAS  PubMed  Google Scholar 

  • Radulovacki M, Virus RM, Djuricic-Nedelson M, Green RD (1984) Adenosine analogs and sleep in rats. J Pharmacol Exp Ther 228:268–274

    CAS  PubMed  Google Scholar 

  • Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shukla V, Zimmermann H, Wang L, Kettenmann H, Raab S, Hammer K, Sévigny J, Robson SC, Braun N (2005) Functional expression of the ecto-ATPase NTPDase2 and of nucleotide receptors by neuronal progenitor cells in the adult murine hippocampus. J Neurosci Res 80:600–610

    Article  CAS  PubMed  Google Scholar 

  • Thom VT, Wendel M, Deussen A (2013) Regulation of ecto-5′-nucleotidase by docosahexaenoic acid in human endothelial cells. Cell Physiol Biochem 32:355–366

    Article  CAS  PubMed  Google Scholar 

  • Ticho SR, Radulovacki M (1991) Role of adenosine in sleep and temperature regulation in the preoptic area of rats. Pharmacol Biochem Behav 40:33–40

    Article  CAS  PubMed  Google Scholar 

  • Vandenbeuch A, Anderson CB, Parnes J, Enjyoji K, Robson SC, Finger TE, Kinnamon SC (2013) Role of the ectonucleotidase NTPDase2 in taste bud function. Proc Natl Acad Sci U S A 110:14789–14794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Virus RM, Djuricic-Nedelson M, Radulovacki M, Green RD (1983) The effects of adenosine and 2′-deoxycoformycin on sleep and wakefulness in rats. Neuropharmacology 22:1401–1404

    Article  CAS  PubMed  Google Scholar 

  • von Gall C, Duffield GE, Hastings MH, Kopp MD, Dehghani F, Korf HW, Stehle JH (1998) CREB in the mouse SCN: a molecular interface coding the phase-adjusting stimuli light, glutamate, PACAP, and melatonin for clockwork access. J Neurosci 18:10389–10397

    Google Scholar 

  • von Gall C, Lewy A, Schomerus C, Vivien-Roels B, Pevét P, Korf HW, Stehle JH (2000) Transcription factor dynamics and neuroendocrine signalling in the mouse pineal gland: a comparative analysis of melatonin-deficient C57BL mice and melatonin-proficient C3H mice. Eur J Neurosci 12:964–972

    Article  Google Scholar 

  • Vongtau HO, Lavoie EG, Sévigny J, Molliver DC (2011) Distribution of ecto-nucleotidases in mouse sensory circuits suggests roles for nucleoside triphosphate diphosphohydrolase-3 in nociception and mechanoreception. Neuroscience 193:387–398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vorhoff T, Zimmermann H, Pelletier J, Sévigny J, Braun N (2005) Cloning and characterization of the ecto-nucleotidase NTPDase3 from rat brain: Predicted secondary structure and relation to other members of the E-NTPDase family and actin. Purinergic Signal 1:259–270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wicht H, Korf HW, Ackermann H, Ekhart D, Fischer C, Pfeffer M (2014) Chronotypes and rhythm stability in mice. Chronobiol Int 31:27–36

    Article  PubMed  Google Scholar 

  • Wink MR, Tamajusuku AS, Braganhol E, Casali EA, Barreto-Chaves ML, Sarkis JJ, Battastini AM (2003) Thyroid hormone upregulates ecto-5′- nucleotidase/CD73 in C6 rat glioma cells. Mol Cell Endocrinol 205:107–114

    Article  CAS  PubMed  Google Scholar 

  • Yasuo S, Yoshimura T, Ebihara S, Korf HW (2009) Melatonin transmits photoperiodic signals through the MT1 melatonin receptor. J Neurosci 29:2885–2889

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362:299–309

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann H, Vogel M, Laube U (1993) Hippocampal localization of 5′-nucleotidase as revealed by immunocytochemistry. Neuroscience 55:105–112

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zylka MJ (2011) Pain-relieving prospects for adenosine receptors and ectonucleotidases. Trends Mol Med 17:188–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Dr. Senckenbergische Stiftung, Frankfurt am Main. We would like to thank Dr. Hanns Ackermann (Institute for Biostatistics und Mathematic Modelling, Goethe University, Frankfurt am Main, Germany) for his kind help with the statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst-Werner Korf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Homola, M., Pfeffer, M., Fischer, C. et al. Expression of ectonucleotidases in the prosencephalon of melatonin-proficient C3H and melatonin-deficient C57Bl mice: spatial distribution and time-dependent changes. Cell Tissue Res 362, 163–176 (2015). https://doi.org/10.1007/s00441-015-2179-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2179-7

Keywords

Navigation