Skip to main content
Log in

Expression of odorant receptor Olfr78 in enteroendocrine cells of the colon

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The precise regulation of digestive and other physiological processes in the gastrointestinal tract in accordance with the food ingested requires continuous monitoring of the luminal content by chemosensory cells. With regard to the detection of chemical compounds in the lumen of the gastrointestinal tract, G-protein-coupled receptors (GPCRs) are interesting signaling proteins, since some of them are well known to bind to macronutrients, including sugars, amino acids and lipids. We report that Olfr78, a member of the odorant receptor (OR) class of GPCRs, is expressed in the murine gut. Our results support the concept that Olfr78 is activated by propionate, an important nutrient generated in the colon by microbiota. In situ hybridization and immunohistochemical approaches show that Olfr78 is expressed in the colon but is absent from other gastrointestinal compartments, such as the stomach and small intestine. In the colon, Olfr78 is expressed by a subset of epithelial cells lining the crypts; these cells are endowed with an apical process protruding towards the crypt lumen. The Olfr78-positive cells in the colon co-express the hormonal peptide YY (PYY), a marker for given enteroendocrine cells. The expression of the propionate receptor Olfr78 in epithelial enteroendocrine cells of the colon suggests that Olfr78 is involved in the regulation of hormone secretion from such cells, as evoked by nutritional compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

5-HT:

Serotonin

β-gal:

β-Galactosidase

CgA:

Chromogranin A

DAPI:

4′,6-Diamidino-2-phenylindole

GFP:

Green fluorescent protein

GLP-1:

Glucagon-like peptide 1

GPCR:

G-protein-coupled receptor

MOE:

Main olfactory epithelium

OMP:

Olfactory marker protein

OR:

Odorant receptor

OSN:

Olfactory sensory neuron

PCR:

Polymerase chain reaction

PYY:

Peptide YY

SCFA:

Short chain fatty acid

PBS:

Phosphate-buffered saline

References

  • Anini Y, Fu-Cheng X, Cuber JC, Kervran A, Chariot J, Rozé C (1999) Comparison of the postprandial release of peptide YY and proglucagon-derived peptides in the rat. Pflügers Arch 438:299–306

    Article  CAS  PubMed  Google Scholar 

  • Arantes RM, Nogueira AM (1997) Distribution of enteroglucagon- and PYY-immunoreactive cells in the intestinal mucosa of germ-free and conventional mice. Cell Tissue Res 290:61–69

    Article  CAS  PubMed  Google Scholar 

  • Asai H, Kasai H, Matsuda Y, Yamazaki N, Nagawa F, Sakano H, Tsuboi A (1996) Genomic structure and transcription of a murine odorant receptor gene: differential initiation of transcription in the olfactory and testicular cells. Biochem Biophys Res Commun 221:240–247

    Article  CAS  PubMed  Google Scholar 

  • Barker N, van Es JH, Kuipers J, Kujala P, Born M van den, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

  • Barnea G, O'Donnell S, Mancia F, Sun X, Nemes A, Mendelsohn M, Axel R (2004) Odorant receptors on axon termini in the brain. Science 304:1468

    Article  CAS  PubMed  Google Scholar 

  • Bautze V, Bär R, Fissler B, Trapp M, Schmidt D, Beifuss U, Bufe B, Zufall F, Breer H, Strotmann J (2012) Mammalian-specific OR37 receptors are differentially activated by distinct odorous fatty aldehydes. Chem Senses 37:479–493

    Article  CAS  PubMed  Google Scholar 

  • Bautze V, Schwack W, Breer H, Strotmann J (2014) Identification of a natural source for the OR37B ligand. Chem Senses 39:27–38

    Article  CAS  PubMed  Google Scholar 

  • Blache P, Gros L, Salazar G, Bataille D (1998) Cloning and tissue distribution of a new rat olfactory receptor-like (OL2). Biochem Biophys Res Commun 242:669–672

    Article  CAS  PubMed  Google Scholar 

  • Bozza T, Feinstein P, Zheng C, Mombaerts P (2002) Odorant receptor expression defines functional units in the mouse olfactory system. J Neurosci 22:3033–3043

    CAS  PubMed  Google Scholar 

  • Breer H, Eberle J, Frick C, Haid D, Widmayer P (2012) Gastrointestinal chemosensation: chemosensory cells in the alimentary tract. Histochem Cell Biol 138:13–24

    Article  CAS  PubMed  Google Scholar 

  • Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319

    Article  CAS  PubMed  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  CAS  PubMed  Google Scholar 

  • Busse D, Kudella P, Grüning NM, Gisselmann G, Ständer S, Luger T, Jacobsen F, Steinsträßer L, Paus R, Gkogkolou P, Böhm M, Hatt H, Benecke H (2014) A synthetic sandalwood odorant induces wound-healing processes in human keratinocytes via the olfactory receptor OR2AT4. J Invest Dermatol 134:2823–2832

    Article  CAS  PubMed  Google Scholar 

  • Cho HJ, Robinson ES, Rivera LR, McMillan PJ, Testro A, Nikfarjam M, Bravo DM, Furness JB (2014a) Glucagon-like peptide 1 and peptide YY are in separate storage organelles in enteroendocrine cells. Cell Tissue Res 357:63–69

    Article  CAS  PubMed  Google Scholar 

  • Cho HJ, Kosari S, Hunne B, Callaghan B, Rivera LR, Bravo DM, Furness JB (2014b) Differences in hormone localisation patterns of K and L type enteroendocrine cells in the mouse and pig small intestine and colon. Cell Tissue Res 359:693–698

    Article  PubMed  Google Scholar 

  • Conzelmann S, Levai O, Bode B, Eisel U, Raming K, Breer H, Strotmann J (2000) A novel brain receptor is expressed in a distinct population of olfactory sensory neurons. Eur J Neurosci 12:3926–3934

    Article  CAS  PubMed  Google Scholar 

  • Cummings JH, Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70:443–459

    Article  CAS  PubMed  Google Scholar 

  • Dreyer WJ (1998) The area code hypothesis revisited: olfactory receptors and other related transmembrane receptors may function as the last digits in a cell surface code for assembling embryos. Proc Natl Acad Sci U S A 95:9072–9077

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Drutel G, Arrang JM, Diaz J, Wisnewsky C, Schwartz K, Schwartz JC (1995) Cloning of OL1, a putative olfactory receptor and its expression in the developing rat heart. Recept Channels 3:33–40

    CAS  PubMed  Google Scholar 

  • Dumoulin V, Moro F, Barcelo A, Dakka T, Cuber JC (1998) Peptide YY, glucagon-like peptide-1, and neurotensin responses to luminal factors in the isolated vascularly perfused rat ileum. Endocrinology 139:3780–3786

    Article  CAS  PubMed  Google Scholar 

  • El-Salhy M, Grimelius L, Wilander E, Ryberg B, Terenius L, Lundberg JM, Tatemoto K (1983) Immunocytochemical identification of polypeptide YY (PYY) cells in the human gastrointestinal tract. Histochemistry 77:15–23

    Article  CAS  PubMed  Google Scholar 

  • Feinstein P, Mombaerts P (2004) A contextual model for axonal sorting into glomeruli in the mouse olfactory system. Cell 117:817–831

    Article  CAS  PubMed  Google Scholar 

  • Feldmesser E, Olender T, Khen M, Yanai I, Ophir R, Lancet D (2006) Widespread ectopic expression of olfactory receptor genes. BMC Genomics 7:121

    Article  PubMed Central  PubMed  Google Scholar 

  • Fleischer J, Hass N, Schwarzenbacher K, Besser S, Breer H (2006) A novel population of neuronal cells expressing the olfactory marker protein (OMP) in the anterior/dorsal region of the nasal cavity. Histochem Cell Biol 125:337–349

    Article  CAS  PubMed  Google Scholar 

  • Fuss SH, Omura M, Mombaerts P (2005) The Grueneberg ganglion of the mouse projects axons to glomeruli in the olfactory bulb. Eur J Neurosci 22:2649–2654

    Article  PubMed  Google Scholar 

  • Gerbe F, Legraverend C, Jay P (2012) The intestinal epithelium tuft cells: specification and function. Cell Mol Life Sci 69:2907–2917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gerspach AC, Steinert RE, Schönenberger L, Graber-Maier A, Beglinger C (2011) The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans. Am J Physiol 301:E317–E325

    CAS  Google Scholar 

  • Goto T, Salpekar A, Monk M (2001) Expression of a testis-specific member of the olfactory receptor gene family in human primordial germ cells. Mol Hum Reprod 7:553–558

    Article  CAS  PubMed  Google Scholar 

  • Gunawardene AR, Corfe BM, Staton CA (2011) Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol 92:219–231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaluza JF, Gussing F, Bohm S, Breer H, Strotmann J (2004) Olfactory receptors in the mouse septal organ. J Neurosci Res 76:442–452

    Article  CAS  PubMed  Google Scholar 

  • Kang N, Koo J (2012) Olfactory receptors in non-chemosensory tissues. BMB Rep 45:612–622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karaki S, Mitsui R, Hayashi H, Kato I, Sugiya H, Iwanaga T, Furness JB, Kuwahara A (2006) Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res 324:353–360

    Article  CAS  PubMed  Google Scholar 

  • Kupperman E, An S, Osborne N, Waldron S, Stainier DY (2000) A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 406:192–195

    Article  CAS  PubMed  Google Scholar 

  • Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, Brezillon S, Dupriez V, Vassart G, Van Damme J, Parmentier M, Detheux M (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278:25481–25489

    Article  PubMed  Google Scholar 

  • Levai O, Feistel T, Breer H, Strotmann J (2006) Cells in the vomeronasal organ express odorant receptors but project to the accessory olfactory bulb. J Comp Neurol 498:476–490

    Article  CAS  PubMed  Google Scholar 

  • Linardopoulou E, Mefford HC, Nguyen O, Friedman C, van den Engh G, Farwell DG, Coltrera M, Trask BJ (2001) Transcriptional activity of multiple copies of a subtelomerically located olfactory receptor gene that is polymorphic in number and location. Hum Mol Genet 10:2373–2383

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62:67–72

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane GT, Macfarlane S (2012) Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 95:50–60

    Article  CAS  PubMed  Google Scholar 

  • Malnic B (2007) Searching for the ligands of odorant receptors. Mol Neurobiol 35:175–181

    Article  CAS  PubMed  Google Scholar 

  • Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723

    Article  CAS  PubMed  Google Scholar 

  • Mombaerts P (1999) Seven-transmembrane proteins as odorant and chemosensory receptors. Science 286:707–711

    Article  CAS  PubMed  Google Scholar 

  • Mombaerts P (2004a) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278

    Article  CAS  PubMed  Google Scholar 

  • Mombaerts P (2004b) Odorant receptor gene choice in olfactory sensory neurons: the one receptor-one neuron hypothesis revisited. Curr Opin Neurobiol 14:31–36

    Article  CAS  PubMed  Google Scholar 

  • Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R (1996) Visualizing an olfactory sensory map. Cell 87:675–686

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus EM, Zhang W, Gelis L, Deng Y, Noldus J, Hatt H (2009) Activation of an olfactory receptor inhibits proliferation of prostate cancer cells. J Biol Chem 284:16218–16225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oliva AM, Jones KR, Restrepo D (2008) Sensory-dependent asymmetry for a urine-responsive olfactory bulb glomerulus. J Comp Neurol 510:475–483

    Article  PubMed Central  PubMed  Google Scholar 

  • Otaki JM, Yamamoto H, Firestein S (2004) Odorant receptor expression in the mouse cerebral cortex. J Neurobiol 58:315–327

    Article  CAS  PubMed  Google Scholar 

  • Parmentier M, Libert F, Schurmans S, Schiffmann S, Lefort A, Eggerickx D, Ledent C, Mollereau C, Gerard C, Perret J, Grootegoed A, Vassart G (1992) Expression of members of the putative olfactory receptor gene family in mammalian germ cells. Nature 355:453–455

    Article  CAS  PubMed  Google Scholar 

  • Plaisancié P, Dumoulin V, Chayvialle JA, Cuber JC (1995) Luminal glucagon-like peptide-1 (7–36) amide-releasing factors in the isolated vascularly perfused rat colon. J Endocrinol 145:521–526

    Article  PubMed  Google Scholar 

  • Plaisancié P, Dumoulin V, Chayvialle JA, Cuber JC (1996) Luminal peptide YY-releasing factors in the isolated vascularly perfused rat colon. J Endocrinol 151:421–429

    Article  PubMed  Google Scholar 

  • Pluznick JL (2013) Renal and cardiovascular sensory receptors and blood pressure regulation. Am J Physiol Ren Physiol 305:F439–F444

    Article  CAS  Google Scholar 

  • Pluznick J (2014) A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes 5:202–207

    Article  PubMed Central  PubMed  Google Scholar 

  • Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, Brunet I, Wan LX, Rey F, Wang T, Firestein SJ, Yanagisawa M, Gordon JI, Eichmann A, Peti-Peterdi J, Caplan MJ (2013) Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A 110:4410–4415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Psichas A, Sleeth ML, Murphy KG, Brooks L, Bewick GA, Hanyaloglu AC, Ghatei MA, Bloom SR, Frost G (2014) The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes (Lond). doi:10.1038/ijo.2014.153

    Google Scholar 

  • Reimann F, Tolhurst G, Gribble FM (2012) G-protein-coupled receptors in intestinal chemosensation. Cell Metab 15:421–431

    Article  CAS  PubMed  Google Scholar 

  • Roth KA, Kim S, Gordon JI (1992) Immunocytochemical studies suggest two pathways for enteroendocrine cell differentiation in the colon. Am J Physiol 263:G174–G180

    CAS  PubMed  Google Scholar 

  • Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD (2009) Odor coding by a mammalian receptor repertoire. Sci Signal 2:ra9

    Article  PubMed Central  PubMed  Google Scholar 

  • Sellin JH (1999) SCFAs: the enigma of weak electrolyte transport in the colon. News Physiol Sci 14:58–64

    CAS  PubMed  Google Scholar 

  • Sjolund K, Sanden G, Hakanson R, Sundler F (1983) Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology 85:1120–1130

    CAS  PubMed  Google Scholar 

  • Sleeth ML, Thompson EL, Ford HE, Zac-Varghese SE, Frost G (2010) Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation. Nutr Res Rev 23:135–145

    Article  CAS  PubMed  Google Scholar 

  • Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH, Zimmer RK, Hatt H (2003) Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299:2054–2058

    Article  CAS  PubMed  Google Scholar 

  • Steinert RE, Beglinger C (2011) Nutrient sensing in the gut: interactions between chemosensory cells, visceral afferents and the secretion of satiation peptides. Physiol Behav 105:62–70

    Article  CAS  PubMed  Google Scholar 

  • Strotmann J, Levai O, Fleischer J, Schwarzenbacher K, Breer H (2004) Olfactory receptor proteins in axonal processes of chemosensory neurons. J Neurosci 24:7754–7761

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Ma M (2004) Molecular organization of the olfactory septal organ. J Neurosci 24:8383–8390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Upchurch BH, Fung BP, Rindi G, Ronco A, Leiter AB (1996) Peptide YY expression is an early event in colonic endocrine cell differentiation: evidence from normal and transgenic mice. Development 122:1157–1163

    CAS  PubMed  Google Scholar 

  • Vanderhaeghen P, Schurmans S, Vassart G, Parmentier M (1997) Specific repertoire of olfactory receptor genes in the male germ cells of several mammalian species. Genomics 39:239–246

    Article  CAS  PubMed  Google Scholar 

  • Varndell IM, Lloyd RV, Wilson BS, Polak JM (1985) Ultrastructural localization of chromogranin: a potential marker for the electron microscopical recognition of endocrine cell secretory granules. Histochem J 17:981–992

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Nemes A, Mendelsohn M, Axel R (1998) Odorant receptors govern the formation of a precise topographic map. Cell 93:47–60

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Pehl U, Breer H, Strotmann J (2002) Olfactory receptor expressed in ganglia of the autonomic nervous system. J Neurosci Res 68:176–184

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Young JM, Friedman C, Williams EM, Ross JA, Tonnes-Priddy L, Trask BJ (2002) Different evolutionary processes shaped the mouse and human olfactory receptor gene families. Hum Mol Genet 11:535–546

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5:124–133

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Elisa Mühlberger for excellent technical assistance and Sven Aschenbroich and Marcel Schirrmann for their initial contribution to the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Fleischer.

Additional information

Joerg Fleischer and Rosolino Bumbalo contributed equally to this work.

This work was supported by the Deutsche Forschungsgemeinschaft (STR 619/5-1 to J. Strotmann and BR 712/25-1 to H. Breer). J. Fleischer was supported by the Humboldt reloaded program of the University of Hohenheim financed by the Bundesministerium für Bildung und Forschung (01PL11003).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl. Tab. 1

Specificity of primary antibodies (PDF 174 kb)

Suppl. Fig. 1

Activity of Olfr78-negative glomeruli in the olfactory bulb upon exposure to propionate. a Cross-section through the glomerular layer of the olfactory bulb from an Olfr78/GFP-transgenic mouse exposed to propionate. The image depicts several glomeruli, including an Olfr78-positive glomerulus [visualized with an antibody against β-galactosidase (β-gal) in red] and adjacent Olfr78-negative glomeruli. Counterstained with DAPI (blue). b Same region of the section shown in a. In addition to the Olfr78-positive glomerulus [visualized in yellow/orange because of the overlay of intrinsic GFP fluorescence (green) and immunofluorescence with an antibody against β-gal (red)], c-Fos-expressing juxtaglomerular cells (green) were also found to encircle a few Olfr78-negative glomeruli (see asterisk). Other Olfr78-negative glomeruli are not surrounded by c-Fos-expressing juxtaglomerular cells (hash). c High-magnification image of the glomerulus denoted by asterisk in b. The glomerulus is encircled by several c-Fos-positive juxtaglomerular cells (white arrows), suggesting that the corresponding olfactory sensory neurons are activated by propionate. d Higher magnification of the glomerulus labeled by hash in b. This glomerulus is not surrounded by c-Fos-positive juxtaglomerular cells, indicating that the corresponding olfactory sensory neurons do not respond to propionate. Bars 50 μm. (PDF 207 kb)

Suppl. Fig. 2

Expression of Olfr78 in the main olfactory epithelium (MOE). a, b In situ hybridization on a coronal section from a wild-type mouse with an RNA probe specific for Olfr78 labeled a subset of cells in the MOE (arrowheads in b). b Higher magnification of boxed area in a. Bars 200 μm (a), 50 μm (b). (PDF 179 kb)

Suppl. Fig. 3

Number of Olfr78-positive cells in distinct colonic regions is similar between male and female mice. Counts of Olfr78-positive cells on colonic sections from female and male mice revealed that the differences in the number of Olfr78-positive cells in the proximal and distal part of the colon were not statistically significant (ns) between female and male mice. In the central colon, a slight but significant difference was seen (P-value = 0.0068). Data from in situ hybridization experiments with sections from three male and three female individuals, with 10 – 16 sections being counted from each animal. A mean of values, the standard deviation and the P-value were calculated. (PDF 103 kb)

Suppl. Fig. 4

Olfr78 is absent from the murine stomach. a, c In situ hybridization with an Olfr78-specific antisense RNA probe on sections through the fundus (a) and antrum/corpus (c) region: no expression of Olfr78 was detectable. b, d Higher magnification of boxed areas in a, c. Bars 100 μm (a, c), 50 μm (b, d). (PDF 197 kb)

Suppl. Fig. 5

Expression of Olfr78 in the caecum. In situ hybridization with an Olfr78-specific antisense probe on a section through the caecum stained cells (arrows) adjacent to crypts. Bar 50 μm. (PDF 141 kb)

Suppl. Fig. 6

Expression of Olfr78 in the MOE. a Immunohistochemistry with a GFP-specific antibody (green) labeled cells on a coronal section through the MOE of a mouse from the transgenic Olfr78/GFP line. b Higher magnification of boxed area in a (arrowheads Olfr78/GFP-positive olfactory sensory neurons [OSNs] endowed with an apical dendrite protruding towards the nasal cavity). Counterstained with DAPI (blue). Bars 200 μm (a), 50 μm (b). (PDF 188 kb)

Suppl. Fig. 7

Olfactory marker protein (OMP) is not expressed in cells of the colon mucosa. a In situ hybridization with an OMP-specific antisense probe on coronal sections through the Grueneberg ganglion of a wild-type mouse showing OMP-positive cells. b Higher magnification of boxed area in a. c Incubation of sections through the distal colon with the same OMP antisense probe gives no hybridization signals. d Higher magnification of boxed area in c. Bars 100 μm (a), 20 μm (b, d), 50 μm (c). (PDF 235 kb)

Suppl. Fig. 8

Specificity of primary antibody against Chromogranin A (CgA). a Immunohistochemistry with an antibody against CgA (red) stained cells in the colon mucosa. b Omitting the antibody for CgA, no labeled cells were observed. Counterstained with DAPI (blue). Bars 20 μm. (PDF 227 kb)

Suppl. Fig. 9

Specificity of primary antibody against serotonin (5-HT). a Immunohistochemical experiments with an antibody against 5-HT (red), labeled cells in the colon. b When the antibody against 5-HT was omitted, no immunostaining was detectable. Counterstained with DAPI (blue). Bars 20 μm. (PDF 167 kb)

Suppl. Fig. 10

Specificity of primary antibodies for glucagon-like peptide 1 (GLP-1) and peptide YY (PYY). a, b Immunohistochemistry with an antibody against GLP-1 (a) or PYY (b) revealed immunoreactive cells (red) in the colon (white arrow in a GLP-1). c, d Omission of the antibody for GLP-1 (c) or PYY (d) gave no detectable immunostaining. Counterstained with DAPI (blue). Bars 20 μm. (PDF 224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleischer, J., Bumbalo, R., Bautze, V. et al. Expression of odorant receptor Olfr78 in enteroendocrine cells of the colon. Cell Tissue Res 361, 697–710 (2015). https://doi.org/10.1007/s00441-015-2165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2165-0

Keywords

Navigation