Skip to main content
Log in

Gastrointestinal chemosensation: chemosensory cells in the alimentary tract

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Sensing potentially beneficial or harmful constituents in the luminal content by specialized cells in the gastrointestinal mucosa is an essential prerequisite for governing digestive processes, initiating protective responses and regulating food intake. Until recently, it was poorly understood how the gastrointestinal tract senses and responds to nutrients and non-nutrients in the diet; however, the enormous progress in unraveling the molecular machinery underlying the responsiveness of gustatory cells in the lingual taste buds to these compounds has been an important starting point for studying intestinal chemosensation. Currently, the field of nutrient sensing in the gastrointestinal tract is evolving rapidly and is benefiting from the deorphanization of previously unliganded G-protein-coupled receptors which respond to important nutrients, such as protein degradation products and free fatty acids as well as from the FACS-assisted isolation of distinct cell populations. This review focuses on mechanisms and principles underlying the chemosensory responsiveness of the alimentary tract. It describes the cell types which might potentially contribute to chemosensation within the gut: cells that can operate as specialized sensors and transducers for luminal factors and which communicate information from the gut lumen by releasing paracrine or endocrine acting messenger molecules. Furthermore, it addresses the current knowledge regarding the expression and localization of molecular elements that may be part of the chemosensory machinery which render some of the mucosal cells responsive to constituents of the luminal content, concentrating on candidate receptors and transporters for sensing nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABCB1:

ATP-binding cassette subfamily B member 1

cAMP:

Cyclic adenosine monophosphate

CaSR:

Calcium-sensing receptor

CCK:

Cholecystokinin

COX:

Cyclooxygenase

FACS:

Fluorescence-activated cell sorting

GIP:

Gastric inhibitory peptide

GLP-1:

Glucagon-like peptide-1

GLUT2:

Glucosetransporter type 2

GLUTag:

Glucagon gene-simian virus-40 large T-antigen

GPCR:

G-protein-coupled receptor

IP3 :

Inositol 3,4,5 triphosphate

KATP :

ATP-sensitive K+ channel

LCFA:

Long-chain fatty acids

NO:

Nitric oxide

NOS:

Nitric oxide synthase

OEA:

Oleoylethanolamide

PepT1:

Peptide transporter 1

PepT2:

Peptide transporter 2

PGP9.5:

Protein gene product 9.5

PKA:

Protein kinase A

PLCβ2:

Phospholipase C beta 2

PYY:

Peptide YY

SCFA:

Short-chain fatty acids

SGLT-1:

Sodium-coupled glucose transporter 1

T2Rs:

Bitter receptors

References

  • Akimori T, Hanazaki K, Okabayashi T, Okamoto K, Kobayashi M, Ogata T (2011) Quantitative distribution of brush cells in the rat gastrointestinal tract: brush cell population coincides with NaHCO3 secretion. Med Mol Morphol 44:7–14

    Article  PubMed  CAS  Google Scholar 

  • Bayliss WM, Starling EH (1902) The mechanism of pancreatic secretion. J Physiol 28:325–353

    PubMed  CAS  Google Scholar 

  • Beglinger S, Drewe J, Schirra J, Göke B, D’Amato M, Beglinger C (2010) Role of fat hydrolysis in regulating glucagon-like peptide-1 secretion. J Clin Endocrinol Metab 95:879–886

    Article  PubMed  CAS  Google Scholar 

  • Behrens M, Meyerhof W (2011) Gustatory and extragustatory functions of mammalian taste receptors. Physiol Behav 105:4–13

    Article  PubMed  CAS  Google Scholar 

  • Berthoud HR, Kressel M, Neuhuber WL (1995) Vagal afferent innervation of rat abdominal paraganglia as revealed by anterograde DiI-tracing and confocal microscopy. Acta Anat 152:127–132

    Article  PubMed  CAS  Google Scholar 

  • Bezençon C, Le Coutre J, Damak S (2007) Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem Senses 32(1):41–49

    Article  PubMed  Google Scholar 

  • Bezençon C, Fürholz A, Raymond F, Mansourian R, Métairon S, Le Coutre J, Damak S (2008) Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells. J Comp Neurol 509:514–525

    Article  PubMed  Google Scholar 

  • Braun T, Voland P, Kunz L, Prinz C, Gratzle M (2007) Enterochromaffin cells of the human gut: sensors for spices and odorants. Gastroenterology 132:1890–1901

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Yang Y, Braunstein E, Georgeson KE, Harmon CM (2001) Gut expression and regulation of FAT/CD36: possible role in fatty acid transport in rat enterocytes. Am J Physiol Endocrinol Metab 281:916–923

    Google Scholar 

  • Choi PS, Zakhary L, Choi WY, Caron S, Alvarez-Saavedra E, Miska EA, McManus M, Harfe B, Giraldez AJ, Horvitz HR, Schier AF, Dulac C (2007) Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron 57:41–55

    Article  Google Scholar 

  • Conigrave AD, Hampson DR (2006) Broad-spectrum l-amino acid sensing by class 3 G-protein-coupled receptors. Trends Endocrinol Metab 17(10):398–407

    Article  PubMed  CAS  Google Scholar 

  • Cooke HJ, Wunderlich J, Christofi FL (2003) “The force be with you”: ATP in gut mechanosensory transduction. News Physiol Sci 18:43–49

    PubMed  CAS  Google Scholar 

  • Cordier-Bussat M, Bernard C, Levenez F, Klages N, Laser-Ritz B, Philippe J, Chayvialle JA, Cuber JC (1998) Peptones stimulate both the secretion of the incretin hormone glucagon-like peptide 1 and the transcription of the proglucagon gene. Diabetes 47:1038–1045

    Article  PubMed  CAS  Google Scholar 

  • Dockray GJ (2003) Luminal sensing in the gut: an overview. J Physiol Pharmacol 54:9–17

    PubMed  Google Scholar 

  • Drucker DJ, Jin T, Asa SL, Young TA, Brubaker PL (1994) Activation of proglucagon gene transcription by protein kinase-A in a novel mouse enteroendocrine cell line. Mol Endocrinol 8:1646–1655

    Article  PubMed  CAS  Google Scholar 

  • Dyer J, Barker PJ, Shirazi-Beechey SP (1997) Nutrient regulation of the intestinal Na+/glucose co-transporter (SGLT1) gene expression. Biochem Biophys Res Commun 230(3):624–629

    Article  PubMed  CAS  Google Scholar 

  • Dyer J, Salmon KS, Zibrik L, Shirazi-Beechey SP (2005) Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem Soc Trans 33(Pt 1):302–305

    PubMed  CAS  Google Scholar 

  • Edfalk S, Steneberg P, Edlund H (2008) Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 57:2280–2287

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Petersen CD, Coy DH, Jiang JK, Thomas CJ, Pollak MR, Wank SA (2010) Calcium-sensing receptor is a physiologic multimodal chemosensor regulating gastric G-cell growth and gastrin secretion. Proc Natl Acad Sci USA 107:17791–17796

    Article  PubMed  CAS  Google Scholar 

  • Finger TE, Böttger B, Hansen A, Anderson KT, Alimohammadi H, Silver WL (2003) Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci USA 100:8981–8986

    Article  PubMed  CAS  Google Scholar 

  • Fujita T, Kobayashi S (1977) Structure and function of gut endocrine cells. Int Rev Cytol Suppl 6:187–233

    PubMed  CAS  Google Scholar 

  • Fujita Y, Wideman RD, Speck M, Asadi A, King DS, Webber TD, Haneda M, Kieffer TJ (2009) Incretin release from gut is acutely enhanced by sugar but not by sweeteners in vivo. Am J Physiol Endocrinol Metab 296(3):473–479

    Article  Google Scholar 

  • Gama L, Baxendale-Cox LM, Breitwieser GE (1997) Ca2+ -sensing receptors in intestinal epithelium. Am J Physiol 273(4 Pt 1):1168–1175

    Google Scholar 

  • Gebert A, al-Samir K, Werner K, Fassbender S, Gebhard A (2000) The apical membrane of intestinal brush cells possesses a specialised, but species-specific, composition of glycoconjugates-on-section and in vivo lectin labelling in rats, guinea-pigs and mice. Histochem Cell Biol 113:389–399

    PubMed  CAS  Google Scholar 

  • Geibel JP, Hebert SC (2009) The functions and roles of the extracellular Ca2+-sensing receptor along the gastrointestinal tract. Annu Rev Physiol 71:205–217

    Article  PubMed  CAS  Google Scholar 

  • Gerbe F, van Es JH, Makrini L, Brulin B, Mellitzer G, Robine S, Romagnolo B, Shroyer NF, Bourgaux JF, Pignodel C, Clevers H, Jay P (2011) Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J Cell Biol 192:767–780

    Article  PubMed  CAS  Google Scholar 

  • Gribble FM, Williams L, Simpson AK, Reimann F (2003) A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes 52:1147–1154

    Article  PubMed  CAS  Google Scholar 

  • Grundy D (2004) What activates visceral afferents? Gut 53:5–8

    Article  Google Scholar 

  • Haid D, Widmayer P, Breer H (2011) Nutrient sensing receptors in gastric endocrine cells. J Mol Histol 42:355–364

    Article  PubMed  CAS  Google Scholar 

  • Haid D, Jordan-Biegger C, Widmayer P, Breer H (2012) Receptors responsive to protein breakdown products in G-cells and D-cells of mouse, swine and human. Front Physio 3:65

    Article  CAS  Google Scholar 

  • Hass N, Schwarzenbacher K, Breer H (2007) A cluster of gustducin-expressing cells in the mouse stomach associated with two distinct populations of enteroendocrine cells. Histochem Cell Biol 128:457–471

    Article  PubMed  CAS  Google Scholar 

  • Hass N, Schwarzenbacher K, Breer H (2010) T1R3 is expressed in brush cells and ghrelin-producing cells of murine stomach. Cell Tissue Res 339(3):493–504

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11:90–94

    Article  PubMed  CAS  Google Scholar 

  • Höfer D, Drenckhahn D (1992) Identification of brush cells in the alimentary and respiratory system by antibodies to villin and fimbrin. Histochemistry 98:237–242

    Article  PubMed  Google Scholar 

  • Höfer D, Drenckhahn D (1996) Cytoskeletal markers allowing discrimination between brush cells and other epithelial cells of the gut including enteroendocrine cells. Histochem Cell Biol 105:405–412

    Article  PubMed  Google Scholar 

  • Höfer D, Püschel B, Drenckhahn D (1996) Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. Proc Natl Acad Sci 93:6631–6634

    Article  PubMed  Google Scholar 

  • Höfer D, Asan E, Drenckhahn D (1999) Chemosensory perception in the gut. News Physiol Sci 14:18–23

    PubMed  Google Scholar 

  • Iwatsuki K, Nomura M, Shibata A, Ichikawa R, Enciso PL, Wang L, Takayanagi R, Torii K, Uneyama H (2010) Generation and characterization of T1R2-LacZ knock-in mouse. Biochem Biophys Res Commun 402(3):495–499

    Article  PubMed  CAS  Google Scholar 

  • Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, Kim HH, Xu X, Chan SL, Juhaszova M, Bernier M, Mosinger B, Margolskee RF, Egan JM (2007) Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci USA 18;104(38):15069–15074

    Google Scholar 

  • Janssen S, Laermans J, Verhulst PJ, Thijs T, Tack J, Depoortere I (2011) Bitter taste receptors and α-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying. Proc Natl Acad Sci USA 108(5):2094–2099

    Article  PubMed  CAS  Google Scholar 

  • Järvi O (1961) A review of the part played by gastrointestinal heterotopias in neoplasmogenesis. Proc Finn Acad Sci (letters) 151–187

  • Jeon TI, Seo YK, Osborne TF (2011) Gut bitter taste receptor signalling induces ABCB1 through a mechanism involving CCK. Biochem J 15;438(1):33–37

    Google Scholar 

  • Kaji I, Karaki S, Fukami Y, Terasaki M, Kuwahara A (2009) Secretory effects of a luminal bitter tastant and expressions of bitter taste receptors, T2Rs, in the human and rat large intestine. Am J Physiol Gastrointest Liver Physiol 296:971–981

    Article  Google Scholar 

  • Kaji I, Karaki S, Kuwahara A (2011) Effects of luminal thymol on epithelial transport in human and rat colon. Am J Physiol Gastrointest Liver Physiol 300:1132–1143

    Article  Google Scholar 

  • Karaki S, Tazoe H, Hayashi H, Kashiwabara H, Tooyama K, Suzuki Y, Kuwahara A (2008) Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J Mol Histol 39(2):135–142

    Article  PubMed  CAS  Google Scholar 

  • Kaske S, Krasteva G, König P, Kummer W, Hofmann T, Gudermann T, Chubanov V (2007) TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells. BMC Neurosci 8:49

    Article  PubMed  Google Scholar 

  • Kidd M, Modlin IM, Gustafsson BI, Drozdov I, Hauso O, Pfragner R (2008) Luminal regulation of normal and neoplastic human EC cell serotonin release is mediated by bile salts, amines, tastants, and olfactants. Am J Physiol Gastrointest Liver Physiol 295(2):260–272

    Article  Google Scholar 

  • Kotarsky K, Boketoft A, Bristulf J, Nilsson NE, Norberg A, Hansson S, Owman C, Sillard R, Leeb-Lundberg LM, Olde B (2006) Lysophosphatidic acid binds to and activates GPR92, a G protein-coupled receptor highly expressed in gastrointestinal lymphocytes. J Pharmacol Exp Ther 318:619–628

    Article  PubMed  CAS  Google Scholar 

  • Krasteva G, Canning BJ, Hartmann P, Veres TZ, Papadakis T, Mühlfeld C, Schliecker K, Tallini YN, Braun A, Hackstein H, Baal N, Weihe E, Schütz B, Kotlikoff M, Ibanez-Tallon I, Kummer W (2011) Cholinergic chemosensory cells in the trachea regulate breathing. Proc Natl Acad Sci USA 108(23):9478–9483

    Article  PubMed  CAS  Google Scholar 

  • Krasteva G, Hartmann P, Papadakis T, Bodenbenner M, Wessels L, Weihe E, Schütz B, Langheinrich AC, Chubanov V, Gudermann T, Ibanez-Tallon I, Kummer W (2012) Cholinergic chemosensory cells in the auditory tube. Histochem Cell Biol (Epub ahead of print)

  • Kugler P, Höfer D, Mayer B, Drenckhahn D (1994) Nitric oxide synthase and NADP-linked glucose-6-phosphate dehydrogenase are co-localized in brush cells of rat stomach and pancreas. J Histochem Cytochem 42:1317–1321

    Article  PubMed  CAS  Google Scholar 

  • Kuzma J, Nemecek-Marshall M, Pollock WH, Fall R (1995) Bacteria produce the volatile hydrocarbon isoprene. Curr Microbiol 30(2):97–103

    Article  PubMed  CAS  Google Scholar 

  • Lan H, Vassileva G, Corona A, Liu L, Baker H, Golovko A, Abbondanzo SJ, Hu W, Yang S, Ning Y, Del Vecchio RA, Poulet F, Laverty M, Gustafson EL, Hedrick JA, Kowalski TJ (2009) GPR119 is required for physiological regulation of glucagon-like peptide-1 secretion but not for metabolic homeostasis. J Endocrinol 201:219–230

    Article  PubMed  CAS  Google Scholar 

  • Langhans W (2010) The enterocyte as an energy flow sensor in the control of eating. Forum Nutr 63:75–84

    Article  PubMed  CAS  Google Scholar 

  • Langhans W, Leitner C, Arnold M (2011) Dietary fat sensing via fatty acid oxidation in enterocytes: possible role in the control of eating. Am J Physiol Regul Integr Comp Physiol 300:554–565

    Article  Google Scholar 

  • Lee SG, Vickers NJ, Baker TC (2006) Glomerular targets of Heliothis subflexa male olfactory receptor neurons housed within long trichoid sensilla. Chem Senses 31:821–834

    Article  PubMed  Google Scholar 

  • Lin W, Ogura T, Margolskee RF, Finger TE, Restrepo D (2008) TRPM5-expressing solitary chemosensory cells respond to odorous irritants. J Neurophysiol 99(3):1451–1460

    Article  PubMed  CAS  Google Scholar 

  • Linden DR, Sha L, Mazzone A, Stoltz GJ, Bernard CE, Furne JK, Levitt MD, Farrugia G, Szurszewski JH (2008) Production of the gaseous signal molecule hydrogen sulfide in mouse tissues. J Neurochem 106:1577–1585

    PubMed  CAS  Google Scholar 

  • Liou AP, Lu X, Sei Y, Zhao X, Pechhold S, Carrero RJ, Raybould HE, Wank S (2011) The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology 140:903–912

    Article  PubMed  CAS  Google Scholar 

  • Little TJ, Feinle-Bisset C (2011) Effects of dietary fat on appetite and energy intake in health and obesity—oral and gastrointestinal sensory contributions. Physiol Behav 104:613–620

    Article  PubMed  CAS  Google Scholar 

  • Lo VJ, Gaetani S, Fu J, Oveisi F, Burton K, Piomelli D (2005) Regulation of food intake by oleoylethanolamide. Cell Mol Life Sci 62:708–716

    Article  Google Scholar 

  • Luciano L, Reale E (1992) The “limiting ridge” of the rat stomach. Arch Histol Cytol 55:131–138

    Article  PubMed  Google Scholar 

  • Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E, Daly K, Maillet EL, Ninomiya Y, Mosinger B, Shirazi-Beechey SP (2007) T1R3 and gustducin in gut sense sugars to regulate expression of Na+ -glucose cotransporter 1. Proc Natl Acad Sci USA 104(38):15075–15080

    Article  PubMed  CAS  Google Scholar 

  • Matsumura K, Miki T, Jhomori T, Gonoi T, Seino S (2005) Possible role of PEPT1 in gastrointestinal hormone secretion. Biochem Biophys Res Commun 336(4):1028–1032

    Article  PubMed  CAS  Google Scholar 

  • Mei N (1985) Intestinal chemosensitivity. Physiol Rev 65:211–237

    PubMed  CAS  Google Scholar 

  • Meyer SC, Sanan DA, Fox JE (1998) Role of actin-binding protein in insertion of adhesion receptors into the membrane. J Biol Chem 273:3013–3020

    Article  PubMed  CAS  Google Scholar 

  • Miguel-Aliaga I (2012) Nerveless and gutsy: intestinal nutrient sensing from invertebrates to humans. Semin Cell Dev Biol (Epub ahead of print)

  • Miller SM, Farrugia G, Schmalz PF, Ermilov LG, Maines MD, Szurszewski JH (1998) Heme oxygenase 2 is present in interstitial cell networks of the mouse small intestine. Gastroenterology 114:239–244

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi S, Hirasawa A, Ichimura A, Hara T, Tsujimoto G (2010) New frontiers in gut nutrient sensor research: free fatty acid sensing in the gastrointestinal tract. J Pharmacol Sci 112:19–24

    Article  PubMed  CAS  Google Scholar 

  • Morroni M, Cangiotti AM, Cinti S (2007) Brush cells in the human duodenojejunal junction: an ultrastructural study. J Anat 211:125–131

    Article  PubMed  Google Scholar 

  • Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106(3):381–390

    Article  PubMed  CAS  Google Scholar 

  • Némoz-Gaillard E, Bernard C, Abello J, Cordier-Bussat M, Chayvialle JA, Cuber JC (1998) Regulation of cholecystokinin secretion by peptones and peptidomimetic antibiotics in STC-1 cells. Endocrinology 139(3):932–938

    Article  PubMed  Google Scholar 

  • Ohneda A, Parada E, Eisentraut AM, Unger RH (1968) Characterization of response of circulating glucagon to intraduodenal and intravenous administration of amino acids. J Clin Invest 47(10):2305–2322

    Article  PubMed  CAS  Google Scholar 

  • Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS, Griffin G, Jackson HC, Procter MJ, Rasamison CM, Tang-Christensen M, Widdowson PS, Williams GM, Reynet C (2006) Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 3:167–175

    Article  PubMed  CAS  Google Scholar 

  • Parker HE, Habib AM, Rogers GJ, Gribble FM, Reimann F (2009) Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia 52:289–298

    Article  PubMed  CAS  Google Scholar 

  • Pérez CA, Huang L, Rong M, Kozak JA, Preuss AK, Zhang H, Max M, Margolskee RF (2002) A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci 5:1169–1176

    Article  PubMed  Google Scholar 

  • Powley TL, Spaulding RA, Haglof SA (2011) Vagal afferent innervation of the proximal gastrointestinal tract mucosa: chemoreceptor and mechanoreceptor architecture. J Comp Neurol 519:644–660

    Article  PubMed  Google Scholar 

  • Rehfeld JF (2004) A centenary of gastrointestinal endocrinology. Horm Metab Res 36:735–741

    Article  PubMed  CAS  Google Scholar 

  • Reimann F, Habib AM, Tolhurst G, Parker HE, Rogers GJ, Gribble FM (2008) Glucose sensing in L cells: a primary cell study. Cell Metab 8:532–539

    Article  PubMed  CAS  Google Scholar 

  • Rindi G, Grant SG, Yiangou Y, Ghatei MA, Bloom SR, Bautch VL, Solcia E, Polak JM (1990) Development of neuroendocrine tumors in the gastrointestinal tract of transgenic mice. Heterogeneity of hormone expression. Am J Pathol 136:1349–1363

    PubMed  CAS  Google Scholar 

  • Rorsman P (1997) The pancreatic beta-cell as a fuel sensor: an electrophysiologist’s viewpoint. Diabetologia 40:487–495

    Article  PubMed  CAS  Google Scholar 

  • Rozengurt N, Wu SV, Chen MC, Huang C, Sternini C, Rozengurt E (2006) Colocalization of the alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon. Am J Physiol Gastrointest Liver Physiol 291(5):792–802

    Article  Google Scholar 

  • Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 105:16767–16772

    Article  PubMed  CAS  Google Scholar 

  • Sato A (2007) Tuft cells. Anat Sci Int 82:187–199

    Article  PubMed  CAS  Google Scholar 

  • Sbarbati A, Bramanti P, Benati D, Merigo F (2010) The diffuse chemosensory system: exploring the iceberg toward the definition of functional roles. Prog Neurobiol 91:77–89

    Article  PubMed  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24(4):814–842

    Article  PubMed  CAS  Google Scholar 

  • Shirazi-Beechey SP, Dyer J, Bagga K, Simmonds R, Wood IS, Allison GG, Scott D, King TP (1997) Molecular events involved in glucose-induced intestinal Na+/d-glucose co-transporter (SGLT1) expression. Biochem Soc Trans 25(3):958–962

    PubMed  CAS  Google Scholar 

  • Simons PJ, Boon L (2011) Lingual CD36 and obesity: a matter of fat taste? Acta Histochem 113:765–767

    Article  PubMed  Google Scholar 

  • Sjölund K, Sandén G, Håkanson R, Sundler F (1983) Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology 85:1120–1130

    PubMed  Google Scholar 

  • Sutherland K, Young RL, Cooper NJ, Horowitz M, Blackshaw LA (2007) Phenotypic characterization of taste cells of the mouse small intestine. Am J Physiol Gastrointest Liver Physiol 292:1420–1428

    Article  Google Scholar 

  • Takaishi S, Shibata W, Tomita H, Jin G, Yang X, Ericksen R, Dubeykovskaya Z, Asfaha S, Quante M, Betz KS, Shulkes A, Wang TC (2011) In vivo analysis of mouse gastrin gene regulation in enhanced GFP-BAC transgenic mice. Am J Physiol Gastrointest Liver Physiol 300:334–344

    Article  Google Scholar 

  • Tanaka T, Katsuma S, Adachi T, Koshimizu TA, Hirasawa A, Tsujimoto G (2008) Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn Schmiedebergs Arch Pharmacol 377:523–527

    Article  PubMed  CAS  Google Scholar 

  • Tazoe H, Otomo Y, Karaki S, Kato I, Fukami Y, Terasaki M, Kuwahara A (2009) Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed Res 30:149–156

    Article  PubMed  CAS  Google Scholar 

  • Theodorakis MJ, Carlson O, Michopoulos S, Doyle ME, Juhaszova M, Petraki K, Egan JM (2006) Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am J Physiol Endocrinol Metab 290:550–559

    Article  Google Scholar 

  • Tolhurst G, Reimann F, Gribble FM (2009) Nutritional regulation of glucagon-like peptide-1 secretion. J Physiol 587:27–32

    Article  PubMed  CAS  Google Scholar 

  • Tolhurst G, Reimann F, Gribble FM (2012) Intestinal sensing of nutrients. Handb Exp Pharmacol 209:309–335

    Article  PubMed  Google Scholar 

  • Trier JS, Allan CH, Marcial MA, Madara JL (1987) Structural features of the apical and tubulovesicular membranes of rodent small intestinal tuft cells. Anat Rec 219:69–77

    Article  PubMed  CAS  Google Scholar 

  • Uneyama H, Takeuchi K (2010) New frontiers in gut nutrient sensor research–from taste physiology to gastroenterology: preface. J Pharmacol Sci 112:6–7

    Article  PubMed  CAS  Google Scholar 

  • Vilardaga JP, Agnati LF, Fuxe K, Ciruela F (2010) G-protein-coupled receptor heteromer dynamics. J Cell Sci 123:4215–4220

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Chandra R, Samsa LA, Gooch B, Fee BE, Cook JM, Vigna SR, Grant AO, Liddle RA (2011) Amino acids stimulate cholecystokinin release through the Ca2+-sensing receptor. Am J Physiol Gastrointest Liver Physiol 300(4):528–537

    Article  Google Scholar 

  • Wattel W, Geuze JJ (1978) The cells of the rat gastric groove and cardia. An ultrastructural and carbohydrate histochemical study, with special reference to the fibrillovesicular cells. Cell Tissue Res 186:375–391

    Article  PubMed  CAS  Google Scholar 

  • Wellendorph P, Burhenne N, Christiansen B, Walter B, Schmale H, Bräuner-Osborne H (2007) The rat GPRC6A: cloning and characterization. Gene 396:257–267

    Article  PubMed  CAS  Google Scholar 

  • Wellendorph P, Johansen LD, Bräuner-Osborne H (2010) The emerging role of promiscuous 7TM receptors as chemosensors for food intake. Vitam Horm 84:151–184

    Article  PubMed  CAS  Google Scholar 

  • Wu SV, Rozengurt N, Yang M, Young SH, Sinnett-Smith J, Rozengurt E (2002) Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc Natl Acad Sci USA 99(4):2392–2397

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The support from the Deutsche Forschungsgemeinschaft over many years is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Breer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breer, H., Eberle, J., Frick, C. et al. Gastrointestinal chemosensation: chemosensory cells in the alimentary tract. Histochem Cell Biol 138, 13–24 (2012). https://doi.org/10.1007/s00418-012-0954-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-0954-z

Keywords

Navigation