Skip to main content

Advertisement

Log in

Confocal stereology: an efficient tool for measurement of microscopic structures

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Quantitative measurements of geometric forms or counting of objects in microscopic specimens is an essential tool in studies of microstructure. Confocal stereology represents a contemporary approach to the evaluation of microscopic structures by using a combination of stereological methods and confocal microscopy. 3-D images acquired by confocal microscopy can be used for the estimation of geometrical characteristics of microscopic structures by stereological methods, based on the evaluation of optical sections within a thick slice and using computer-generated virtual test probes. Such methods can be used for estimating volume, number, surface area and length using relevant spatial probes, which are generated by specific software. The interactions of the probes with the structure under study are interactively evaluated. An overview of the methods of confocal stereology developed during the past 30 years is presented. Their advantages and pitfalls in comparison with other methods for measurement of geometrical characteristics of microscopic structures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albrechtová J, Janáček J, Lhotáková Z, Radochová R, Kubínová L (2007) Novel efficient methods for measuring mesophyll anatomical characteristics from fresh thick sections using stereology and confocal microscopy: application on acid rain-treated Norway spruce needles. J Exp Bot 58:1451–1461

    PubMed  Google Scholar 

  • Åslund N, Carlsson K, Liljeborg A, Majlof L (1983) PHOIBOS, a microscope scanner designed for micro-fluorometric applications, using laser induced fluorescence. In: Proceedings of the Third Scandinavian Conference on Image Analysis. Studentliteratur, Lund

  • Baddeley AJ, Gundersen HJG, Cruz-Orive LM (1986) Estimation of surface area from vertical sections. J Microsc 142:259–276

    CAS  PubMed  Google Scholar 

  • Bandaru V, Hansen DJ, Codling EE, Daughtry CS, White-Hansen S, Green CE (2010) Quantifying arsenic-induced morphological changes in spinach leaves: implications for remote sensing. Int J Remote Sens 31:4163–4177

    Google Scholar 

  • Baquet ZC, Williams D, Brody J, Smeyne RJ (2009) A comparison of model-based (2D) and design-based (3D) stereological methods for estimating cell number in the substantia nigra pars compacta (SNpc) of the C57BL/6J mouse. Neuroscience 161:1082–1090

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bauer J, Bahmer FA, Wörl J, Neuhuber W, Schuler G, Fartasch M (2001) A strikingly constant ratio exists between Langerhans cells and other epidermal cells in human skin. A stereologic study using the optical disector method and the confocal laser scanning microscope. J Investig Dermatol 116:313–318

    CAS  PubMed  Google Scholar 

  • Bjaalije JG (2002) Localization in the brain: new solutions emerging. Nat Rev Neurosci 3:322–325

    Google Scholar 

  • Burdíková Z, Čapek M, Ostašov P, Machač J, Pelc R, Mitchell EAD, Kubínová L (2010) Testate amoebae examined by confocal and two-photon microscopy: implications for taxonomy and ecophysiology. Microsc Microanal 16:735–746

    PubMed  Google Scholar 

  • Čapek M, Janáček J, Kubínová L (2006) Methods for compensation of the light attenuation with depth of images captured by a confocal microscope. Microsc Res Tech 69:624–635

    PubMed  Google Scholar 

  • Čebašek V, Kubínová L, Ribarič S, Eržen I (2004) A novel staining method for quantification and 3D visualisation of capillaries and muscle fibres. Eur J Histochem 48:151–158

    PubMed  Google Scholar 

  • Čebašek V, Kubínová L, Ribarič S, Eržen I (2005) Capillary network in slow and fast muscles and in oxidative and glycolitic muscle fibres. Image Anal Stereol 24:51–58

    Google Scholar 

  • Čebašek V, Radochová R, Ribarič S, Kubínová L, Eržen I (2006) Nerve injury affects the capillary supply in rat slow and fast muscles differently. Cell Tissue Res 323:305–312

    PubMed  Google Scholar 

  • Čebašek V, Kubínová L, Janáček J, Ribarič S, Eržen I (2007) Adaptation of muscle fibre types and capillary network to acute denervation and shortlasting reinnervation. Cell Tissue Res 330:279–289

    PubMed  Google Scholar 

  • Čebašek V, Eržen I, Vyhnal A, Janáček J, Ribarič S, Kubínová L (2010) The estimation error of skeletal muscle capillary supply is significantly reduced by 3D method. Microvasc Res 79:40–46

    PubMed  Google Scholar 

  • Cruz-Orive LM (1989) On the precision of systematic sampling: a review of Matheron’s transitive methods. J Microsc 153:315–333

    Google Scholar 

  • Cruz-Orive LM (1993) Systematic sampling in stereology. Bull Intern Statis Inst Proceedings 49th Session, Florence 1993, 55: 451–468

  • Cruz-Orive LM (1997) Stereology of single objects. J Microsc 186:93–107

    Google Scholar 

  • Cruz-Orive LM (1999) Precision of Cavalieri sections and slices with local errors. J Microsc 193:182–198

    CAS  PubMed  Google Scholar 

  • Cruz-Orive LM, Howard CV (1991) Estimating the length of a bounded curve in three dimensions using total vertical projections. J Microsc 163:101–113

    Google Scholar 

  • Cruz-Orive LM, Howard CV (1995) Estimation of individual feature surface area with the vertical spatial grid. J Microsc 178:146–151

    Google Scholar 

  • Delorme R, Benchaib M, Bryon PA, Souchier C (1998) Measurement accuracy in confocal microscopy. J Microsc 192:151–162

    CAS  PubMed  Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    CAS  PubMed  Google Scholar 

  • Diaspro A (ed) (2002) Confocal and two-photon microscopy. Wiley-Liss, New York

    Google Scholar 

  • Difato F, Mazzone F, Scaglione S, Fato M, Beltrame F, Kubínová L, Janáček J, Ramoino P, Vicidomini G, Diaspro A (2004) Improvement in volume estimation from confocal sections after image deconvolution. Microsc Res Tech 64:151–155

    CAS  PubMed  Google Scholar 

  • Dorph-Petersen KA, Nyengaard JR, Gundersen HJG (2001) Tissue shrinkage and unbiased stereological estimation of particle number and size. J Microsc 204:232–246

    CAS  PubMed  Google Scholar 

  • Dvořák J, Jensen EBV (2013) On semiautomatic estimation of surface area. J Microsc 250:142–157

    PubMed  Google Scholar 

  • Eržen I, Janáček J, Kubínová L (2011) Characterisation of the capillary network in skeletal muscles from 3D data—a review. Physiol Res 60:1–13

    PubMed  Google Scholar 

  • Everall IP, Heaton RK, Marcotte TD, Ellis RJ, McCutchan JA, Atkinson JH, Grant I, Mallory M, Masliah E (1999) Cortical synaptic density is reduced in mild to moderate human immunodeficiency virus neurocognitive disorder. HNRC Group. HIV Neurobehavioral Research Center. Brain Pathol 9:209–217

    CAS  PubMed  Google Scholar 

  • Gardi JE, Nyengard JR, Gundersen HJG (2008) Automatic sampling for unbiased and efficient stereological estimation using the proportionator in biological studies. J Microsc 230:108–120

    CAS  PubMed  Google Scholar 

  • Geuna S, Herrera-Rincon C (2015) Update on stereology for light microscopy. Cell Tissue Res (in press)

  • Gokhale AM (1990) Unbiased estimation of curve length in 3D using vertical slices. J Microsc 159:133–141

    Google Scholar 

  • Gokhale AM, Evans RA, Mackes JL, Mouton PR (2004) Design-based estimation of surface area in thick tissue sections of arbitrary orientation using virtual cycloids. J Microsc 216:25–31

    CAS  PubMed  Google Scholar 

  • Gundersen HJG (1977) Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. J Microsc 111:219–223

    Google Scholar 

  • Gundersen HJG (1986) Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J Microsc 143:3–45

    CAS  PubMed  Google Scholar 

  • Gundersen HJG (1988) The nucleator. J Microsc 151:3–21

    CAS  PubMed  Google Scholar 

  • Gundersen HJG (2002a) Stereological estimation of tubular length. J Microsc 207:155–160

    CAS  PubMed  Google Scholar 

  • Gundersen HJG (2002b) The smooth fractionator. J Microsc 207:191–210

    CAS  PubMed  Google Scholar 

  • Gundersen HJG, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263

    CAS  PubMed  Google Scholar 

  • Gundersen HJ, Østerby R (1981) Optimizing sampling efficiency of stereological studies in biology: or ‘do more less well!’. J Microsc 121:65–73

    CAS  PubMed  Google Scholar 

  • Gundersen HJG, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Møller A, Nielsen K, Nyengaard JR, Pakkenberg B, Sørensen FB, Vesterby A, West MJ (1988) The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS 96:857–881

    CAS  PubMed  Google Scholar 

  • Gundersen HJG, Jensen EBV, Kiêu K, Nielsen J (1999) The efficiency of systematic sampling in stereology - reconsidered. J Microsc 193:199–211

    CAS  PubMed  Google Scholar 

  • Hahn U, Sandau K (1989) Precision of surface area estimation using spatial grids. Acta Stereol 8:425–430

    Google Scholar 

  • Hansen LV, Nyengaard JR, Andersen JB, Jensen EBV (2011) The semi-automatic nucleator. J Microsc 242:206–215

    CAS  PubMed  Google Scholar 

  • Howard CV, Reed MG (1998) Unbiased stereology: three-dimensional measurement in microscopy. Microscopy handbooks, vol 41. Springer, New York

    Google Scholar 

  • Howard CV, Sandau K (1992) Measuring the surface area of a cell by the method of the spatial grid with a CSLM – a demonstration. J Microsc 165:183–188

    CAS  PubMed  Google Scholar 

  • Howard CV, Reid S, Baddeley A, Boyde A (1985) Unbiased estimation of particle density in the tandem scanning reflected light microscope. J Microsc 138:203–212

    CAS  PubMed  Google Scholar 

  • Howell K, Hopkins N, McLaughlin P (2002) Combined confocal microscopy and stereology: a highly efficient and unbiased approach to quantitative structural measurement in tissues. Exp Physiol 87:747–756

    PubMed  Google Scholar 

  • Huang CX, Qiu X, Wang S, Wu H, Xia L, Li C, Gao Y, Zhang L, Xiu Y, Chao F, Tang Y (2013) Exercise-induced changes of the capillaries in the cortex of middle-aged rats. Neuroscience 233:139–145

    CAS  PubMed  Google Scholar 

  • Janáček J (1999) Errors of spatial grids estimators of volume and surface area. Acta Stereol 18:389–396

    Google Scholar 

  • Janáček J, Kubínová L (2010) Variances of length and surface area estimates by spatial grids: preliminary study. Image Anal Stereol 29:45–52

    Google Scholar 

  • Janáček J, Kreft M, Čebašek V, Eržen I (2012) Correcting the axial shrinkage of skeletal muscle thick sections visualized by confocal microscopy. J Microsc 246:107–112

    PubMed  Google Scholar 

  • Jensen EBV, Gundersen HJG (1993) The rotator. J Microsc 170:35–44

    Google Scholar 

  • Jirkovská M, Kubínová L, Krekule I, Hach P (1998) Spatial arrangement of fetal placental capillaries in terminal villi: a study using confocal microscopy. Anat Embryol 197:263–272

    PubMed  Google Scholar 

  • Jirkovská M, Kubínová L, Janáček J, Moravcová M, Krejčí V, Karen P (2002) Topological properties and spatial organization of villous capillaries in normal and diabetic placentas. J Vasc Res 39:268–278

    PubMed  Google Scholar 

  • Kiêu K, Jensen EBV (1993) Stereological estimation based on isotropic slices through fixed points. J Microsc 170:45–51

    Google Scholar 

  • Kiêu K, Xiong W, Trubuil A (1998) Precision of systematic counts. Rapport Technique 1998–1, Unité de Biométrie, INRA-Versailles

  • Kubínová L, Janáček J (1998) Estimating surface area by isotropic fakir method from thick slices cut in arbitrary direction. J Microsc 191:201–211

    PubMed  Google Scholar 

  • Kubínová L, Janáček J (2001) Confocal microscopy and stereology: estimating volume, number, surface area and length by virtual test probes applied to three-dimensional images. Microsc Res Tech 53:425–435

    PubMed  Google Scholar 

  • Kubínová L, Janáček J (2009) Systematic sampling in 3d using virtual test probes and its application to surface area and length measurement. Proc 10th European Congress of Stereology and Image Analysis, Milan, Italy, Jun 22–59, 2009: 253–260

  • Kubínová L, Karen P, Indra M, Jirkovská M, Palovský R, Krekule I (1995) The role of stereology, confocal microscopy and 3-D reconstructions in morphometrical analysis of 3-D biological structures. Biomed Tech 40:196–197

    Google Scholar 

  • Kubínová L, Janáček J, Antoš K, Ježek B, Indra M, Jirák D, Krekule I (1996a) Application of graphical workstation SGI INDY and IBM PC to rendering and visualization of the objects captured by a confocal microscope. Acta Vet Brno 65:253–262

    Google Scholar 

  • Kubínová L, Jirkovská M, Hach P (1996b) Stereology and confocal microscopy: application to the study of placental terminal villus. Acta Stereol 15:153–158

    Google Scholar 

  • Kubínová L, Janáček J, Guilak F, Opatrný Z (1999) Comparison of several digital and stereological methods for estimating surface area and volume of cells studied by confocal microscopy. Cytometry 36:85–95

    PubMed  Google Scholar 

  • Kubínová L, Janáček J, Ribarič S, Čebašek V, Eržen I (2001) Three-dimensional study of the capillary supply of skeletal muscle fibers using confocal microscopy. J Muscle Res Cell Motil 22:217–227

    PubMed  Google Scholar 

  • Kubínová L, Janáček J, Krekule I (2002) Stereological methods for estimating geometrical parameters of microscopical structure studied by three-dimensional microscopical techniques. In: Diaspro A (ed) Confocal and two-photon microscopy. Wiley-Liss, New York, pp 299–332

    Google Scholar 

  • Kubínová L, Mao XW, Janáček J, Archambeau JO (2003) Stereology techniques in radiation biology. Radiat Res 160:110–119

    PubMed  Google Scholar 

  • Kubínová L, Janáček J, Karen P, Radochová B, Difato F, Krekule I (2004) Confocal stereology and image analysis: methods for estimating geometrical characteristics of cells and tissues from three-dimensional confocal images. Physiol Res 53(Suppl 1):S47–S55

    PubMed  Google Scholar 

  • Kubínová L, Janáček J, Albrechtová J, Karen P (2005) Stereological and digital methods for estimating geometrical characteristics of biological structures using confocal microscopy. In: Evangelista V, Barsanti L, Passarelli V, Gualtieri P (eds) From cells to proteins: imaging nature across dimensions, vol 3, NATO Security through Science Series, Sub-Series B: Physics and Biophysics. Springer, New York, pp 271–321

    Google Scholar 

  • Kubínová L, Mao XW, Janáček J (2013) Blood capillary length estimation from three-dimensional microscopic data by image analysis and stereology. Microsc Microanal 19:898–906

    PubMed  Google Scholar 

  • Kubínová Z, Janáček J, Lhotáková Z, Kubínová L, Albrechtová J (2014) Unbiased estimation of chloroplast number in mesophyll cells: advantage of a genuine three-dimensional approach. J Exp Bot 65:609–620

    PubMed Central  PubMed  Google Scholar 

  • Larsen JO, Gundersen HJG, Nielsen J (1998) Global spatial sampling with isotropic virtual planes: estimators of length density and total length in thick, arbitrarily orientated sections. J Microsc 191:238–248

    PubMed  Google Scholar 

  • Lhotáková Z, Albrechtová J, Janáček J, Kubínová L (2008) Advantages and pitfalls of using free-hand sections of frozen needles for three-dimensional analysis of mesophyll by stereology and confocal microscopy. J Microsc 232:56–63

    PubMed Central  PubMed  Google Scholar 

  • Lhotáková Z, Urban O, Dubánková M, Cvikrová M, Tomášková I, Kubínová L, Zvára K, Marek MV, Albrechtová J (2012) The impact of long-term CO2 enrichment on sun and shade needles of Norway spruce (Picea abies): photosynthetic performance, needle anatomy and phenolics accumulation. Plant Sci 188:60–70

    PubMed  Google Scholar 

  • Malmgren LT, Fisher PJ, Jones CE, Bookman LM, Uno T (2000) Numerical densities of myonuclei and satellite cells in muscle fiber types in the aging human thyroarytenoid muscle: an immunohistochemical and stereological study using confocal laser scanning microscopy. Otolaryngol Head Neck Surg 123:377–384

    CAS  PubMed  Google Scholar 

  • Mao XW, Favre CJ, Fike JR, Kubínová L, Anderson E, Campbell-Beachler M, Jones T, Smith A, Rightnar S, Nelson GA (2010) High-LET radiation-induced response of microvessels in the hippocampus. Radiat Res 173:486–493

    CAS  PubMed  Google Scholar 

  • Matheron G (1965) Les variables régionalisées et leur estimation. Masson, Paris

    Google Scholar 

  • Mattfeldt T, Möbius H-J, Mall G (1985) Orthogonal triplet probes; an efficient method for unbiased estimation of length and surface of objects with unknown orientation in space. J Microsc 139:279–289

    CAS  PubMed  Google Scholar 

  • Mattfeldt T, Mall G, Gharehbaghi H, Moller P (1990) Estimation of surface area and length with the orientator. J Microsc 159:301–317

    CAS  PubMed  Google Scholar 

  • Mokin M, Keifer J (2006) Quantitative analysis of immunofluorescent punctate staining of synaptically localized proteins using confocal microscopy and stereology. J Neurosci Methods 157:218–224

    CAS  PubMed  Google Scholar 

  • Mouton PR (2011) Unbiased stereology: a concise guide. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Mouton PR, Gokhale AM, Ward NL, West MJ (2002) Stereological length estimation using spherical probes. J Microsc 206:54–64

    CAS  PubMed  Google Scholar 

  • Nakamura O (1999) Fundamental of two-photon microscopy. Microsc Res Tech 47:165–171

    CAS  PubMed  Google Scholar 

  • Pawley J (ed) (1995) Handbook of biological confocal microscopy, 2nd edn. Plenum, New York

    Google Scholar 

  • Pawley JB (ed) (2006) Handbook of biological confocal microscopy, 3rd edn. Springer, Berlin

    Google Scholar 

  • Peterson DA (1999) Quantitative histology using confocal microscopy: implementation of unbiased stereology procedures. Methods 18:493–507

    CAS  PubMed  Google Scholar 

  • Peterson DA (2014) High-resolution estimation of multiple cell populations in tissue using confocal stereology. In: Cornea A, Conn PM (eds) Fluorescence microscopy: super-resolution and other novel techniques. Academic, New York

    Google Scholar 

  • Petráň M, Hadravský M, Egger MD, Galambos R (1968) Tandem-scanning reflected-light microscope. J Opt Soc Am 58:661–664

    Google Scholar 

  • Postlethwait EM, Joad JP, Hyde DM, Schelegle ES, Bric JM, Weir AJ, Putney LF, Wong VJ, Velsor LW, Plopper CG (2000) Three-dimensional mapping of ozone-induced acute cytotoxicity in tracheobronchial airways of isolated perfused rat lung. Am J Respir Cell Mol Biol 22:191–199

    CAS  PubMed  Google Scholar 

  • Puelles VG, Douglas-Denton RN, Cullen-McEwen L, McNamara BJ, Salih F, Li J, Hughson MD, Hoy WE, Nyengaard JR, Bertram JF (2014) Design-based stereological methods for estimating numbers of glomerular podocytes. Ann Anat 196:48–56

    PubMed  Google Scholar 

  • Rigaut JP (1989) Image analysis in histology – hope, disillusion, and hope again. Acta Stereol 8:3–12

    Google Scholar 

  • Rigaut JP, Carvajal-Gonzales S, Vassy J (1992) 3-D image cytometry. In: Kriete A (ed) Visualization in biomedical microscopies. VCH, Weinheim, New York, pp 205–248

    Google Scholar 

  • Romek M, Karasinski J (2011) Quantification of connexin43 gap junctions in porcine myometrium by confocal microscopy and stereology. Reprod Domest Anim 46:29–38

    CAS  PubMed  Google Scholar 

  • Rostkowski AB, Teppen TL, Peterson DA, Urban JH (2009) Cell-specific expression of neuropeptide Y Y1 receptor immunoreactivity in the rat basolateral amygdala. J Comp Neurol 517:166–176

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sajko Š, Kubínová L, Cvetko E, Kreft M, Wernig A, Eržen I (2004) Frequency of M-Cadherin-stained satellite cells declines in human muscles during aging. J Histochem Cytochem 52:179–185

    CAS  PubMed  Google Scholar 

  • Sandau K (1987) How to estimate the area of a surface using a spatial grid. Acta Stereol 6:31–36

    Google Scholar 

  • Santaló LA (1976) Integral geometry and geometric probability. Addison-Wesley, Reading

    Google Scholar 

  • Schmitz C, Hof PR (2005) Design-based stereology in neuroscience. Neuroscience 130:813–831

    CAS  PubMed  Google Scholar 

  • Schmitz C, Eastwood BS, Tappan SJ, Glaser JR, Peterson DA, Hof PR (2014) Current automated 3D cell detection methods are not a suitable replacement for manual stereologic cell counting. Front Neuroanat 8:27

    PubMed Central  PubMed  Google Scholar 

  • Shaw P (1994) Deconvolution in 3-D optical microscopy. Histochem J 26:687–694

    CAS  PubMed  Google Scholar 

  • Sheppard CJR, Török P (1997) Effects of specimen refractive index on confocal imaging. J Microsc 185:366–374

    Google Scholar 

  • Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136

    CAS  PubMed  Google Scholar 

  • Tandrup T, Gundersen HJG, Jensen EBV (1997) The optical rotator. J Microsc 186:108–120

    CAS  PubMed  Google Scholar 

  • Tomori Z, Matis L, Karen P, Kubínová L, Krekule I (2000) STESYS2: extended STESYS software for MS WINDOWS. Physiol Res 49:695–701

    CAS  PubMed  Google Scholar 

  • Tomori Z, Krekule I, Kubínová L (2001) DISECTOR program for unbiased estimation of particle number, numerical density and mean volume. Image Anal Stereol 20:119–130

    CAS  Google Scholar 

  • Wan D-S, Rajadhyaksha M, Webb RH (2000) Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33–1.40. J Microsc 197:274–284

    CAS  PubMed  Google Scholar 

  • Weibel ER (1979) Stereological methods, vol. 1: practical methods for biological morphometry. Academic, London

    Google Scholar 

  • West MJ (2012) Basic stereology for biologists and neuroscientists. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • West MJ, Gundersen HJG (1990) Unbiased stereological estimation of the number of neurons in the human hippocampus. J Comp Neurol 296:1–22

    CAS  PubMed  Google Scholar 

  • Zakiewicz IM, van Dongen YC, Leergaard TB, Bjaalie JG (2011) Workflow and atlas system for brain-wide mapping of axonal connectivity in rat source. PLoS ONE 6:e22669

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present study was supported by the Czech Republic’s public funds provided by the Czech Academy of Sciences (RVO:67985823) and the Ministry of Education, Youth and Sports (KONTAKT LH13028). The authors wish to thank Dr. Ida Eržen (Institute of Anatomy, Faculty of Medicine, University of Ljubljana) for providing the skeletal muscle specimen shown in Figs. 3, 4 and 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Kubínová.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Movie 1

(AVI 488 kb)

Movie 2

(AVI 997 kb)

Movie 3

(AVI 994 kb)

Movie 4

(AVI 622 kb)

Movie 5

(AVI 787 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubínová, L., Janáček, J. Confocal stereology: an efficient tool for measurement of microscopic structures. Cell Tissue Res 360, 13–28 (2015). https://doi.org/10.1007/s00441-015-2138-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2138-3

Keywords

Navigation