Skip to main content
Log in

Beta-arrestin 1 is involved in the catabolic response stimulated by hyaluronan degradation in mouse chondrocytes

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Beta-arrestin-1 (β-arrestin-1) is an adaptor protein that functions in the termination of G-protein activation and seems to be involved in the mediation of the inflammatory response. Interleukin-1β (IL-1β) elicits the expression of inflammatory mediators through a mechanism involving hyaluronan (HA) degradation, thereby contributing to toll-like receptor 4 (TLR-4) and CD44 activation. Stimulation of both receptors induces nuclear factor kappaB (NF-kB) activation that, through transforming-growth-factor-activated-kinase-1 (TAK-1), in turn stimulates the inflammatory mediators of transcription. As β-arrestin-1 seems to play an inflammatory role in arthritis, we have investigated the involvement of β-arrestin-1 in a model of IL-1β-induced inflammatory response in mouse chondrocytes. IL-1β treatment significantly increases chondrocytes TLR-4, CD44, β-arrestin-1, TAK-1, and serine/threonine kinase (AKT) mRNA expression and related protein levels. NF-kB is also markedly activated with consequent tumor-necrosis-factor-alpha, interleukin-6, and inducible-nitric-oxide-synthase up-regulation. Treatment of IL-1β-stimulated chondrocytes with β-arrestin-1 and/or AKT and/or TAK-1-specific inhibitors significantly reduces all parameters, although the inhibitory effect exerted by TAK-1-mediated pathways is more effective than that of β-arrestin-1. β-Arrestin-1-induced NF-kB activation is mediated by the AKT pathway as shown by IL-1β-stimulated chondrocytes treated with AKT inhibitor. Finally, a specific HA-blocking peptide (Pep-1) has confirmed the inflammatory role of degraded HA as a mediator of the IL-1β-induced activation of β-arrestin-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bartok B, Firestein GS (2010) Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev 233:233–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhiloca S, Amin R, Pandya M, Yuan H, Tank M, LoBello J, Shytuhina A, Wang W, Wisniewski HG, Motte C de la, Cowman MK (2011) Agarose and polyacrylamide gel electrophoresis methods for molecular mass analysis of 5- to 500-kDa hyaluronan. Anal Biochem 417:41–49

  • Brennan FM, McInnes IB (2008) Evidence that cytokines play a role in rheumatoid arthritis. J Clin Invest 118:3537–3545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Campo GM, Avenoso A, Campo S, D’Ascola A, Traina P, Calatroni A (2009) Differential effect of molecular size HA in mouse chondrocytes stimulated with PMA. Biochim Biophys Acta 1790:1353–1367

    Article  CAS  PubMed  Google Scholar 

  • Campo GM, Avenoso A, Campo S, D’Ascola A, Nastasi G, Calatroni A (2010) Small hyaluronan oligosaccharides induce inflammation by both toll-like-4 and CD44 receptors in human chondrocytes. Biochem Pharmacol 80:480–490

    Article  CAS  PubMed  Google Scholar 

  • Campo GM, Avenoso A, D’Ascola A, Scuruchi M, Prestipino V, Calatroni A, Campo S (2012a) 6-Mer hyaluronan oligosaccharides increase IL-18 and IL-33 production in mouse synovial fibroblasts subjected to collagen-induced arthritis. Innate Immun 18:675–684

    Article  PubMed  Google Scholar 

  • Campo GM, Avenoso A, D’Ascola A, Prestipino V, Scuruchi M, Nastasi G, Calatroni A, Campo S (2012b) Hyaluronan differently modulates TLR-4 and the inflammatory response in mouse chondrocytes. Biofactors 38:69–76

    Article  CAS  PubMed  Google Scholar 

  • Campo GM, Avenoso A, D’Ascola A, Prestipino V, Scuruchi M, Nastasi G, Calatroni A, Campo S (2012c) The stimulation of adenosine A2 receptor reduces inflammatory response in mouse articular chondrocytes treated with hyaluronan oligosaccharides. Matrix Biol 31:338–351

    Article  CAS  PubMed  Google Scholar 

  • Campo GM, Avenoso A, D’Ascola A, Scuruchi M, Prestipino V, Nastasi G, Calatroni A, Campo S (2012d) Adenosine A2A receptor activation and hyaluronan fragment inhibition reduce inflammation in mouse articular chondrocytes stimulated with interleukin-1β. FEBS J 279:2120–2133

    Article  CAS  PubMed  Google Scholar 

  • Campo GM, Avenoso A, D’Ascola A, Scuruchi M, Prestipino V, Calatroni A, Campo S (2012e) Hyaluronan in part mediates IL-1beta-induced inflammation in mouse chondrocytes by up-regulating CD44 receptors. Gene 494:24–35

    Article  CAS  PubMed  Google Scholar 

  • Campo GM, Avenoso A, D’Ascola A, Prestipino V, Scuruchi M, Nastasi G, Calatroni A, Campo S (2013) 4-Mer hyaluronan oligosaccharides stimulate inflammation response in synovial fibroblasts in part via TAK-1 and in part via P38-MAPK. Curr Med Chem 20:1162–1172

    Article  CAS  PubMed  Google Scholar 

  • Campo GM, Avenoso A, D’Ascola A, Scuruchi M, Calatroni A, Campo S (2015) Beta arrestin 2 negatively modulates inflammation response in mouse chondrocytes induced by 4-mer hyaluronan oligosaccharide. Mol Cell Biochem 399:201–208

    Article  CAS  PubMed  Google Scholar 

  • Cowman MK, Chen CC, Pandya M, Yuan H, Ramkishun D, LoBello J, Bhilocha S, Russel-Puleri S, Skendaj E, Mijovic J, Jing W (2011) Improved agarose gel electrophoresis method and molecular mass calculation for high molecular mass hyaluronan. Anal Biochem 417:50–56

    Article  CAS  PubMed  Google Scholar 

  • Di Carlo EF, Kahn LB (2011) Inflammatory diseases of the bones and joints. Semin Diagn Pathol 28:53–64

    Article  Google Scholar 

  • Fan H, Luttrell LM, Tempel GE, Senn JJ, Halushka PV, Cook JA (2007) Beta-arrestins 1 and 2 differentially regulate LPS-induced signaling and pro-inflammatory gene expression. Mol Immunol 44:3092–3099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gerlo S, Kooijman R, Beck IM, Kolmus K, Spooren A, Haegeman G (2011) Cyclic AMP: a selective modulator of NF-kB action. Cell Mol Life Sci 68:3823–3841

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, Liang J, Noble PW (2011) Hyaluronan as an immune regulator in human diseases. Physiol Rev 91:221–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee HG, Cowman MK (1994) An agarose gel electrophoretic method for analysis of hyaluronan molecular weight distribution. Anal Biochem 219:278–287

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wei B, Guo A, Liu C, Huang S, Du F, Fan W, Bao C, Pei G (2013) Deficiency of β-arrestin1 ameliorates collagen-induced arthritis with impaired TH17 cell differentiation. Proc Natl Acad Sci USA 110:7395–7400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li P, Cook JA, Gilkeson GS, Luttrell LM, Wang L, Borg KT, Halushka PV, Fan H (2011) Increased expression of beta-arrestin 1 and 2 in murine models of rheumatoid arthritis: isoform specific regulation of inflammation. Mol Immunol 49:64–74

    Article  PubMed Central  PubMed  Google Scholar 

  • Li Z, Potts EN, Piantadosi CA, Foster WM, Hollingsworth JW (2010) Hyaluronan fragments contribute to the ozone-primed immune response to lipopolysaccharide. J Immunol 185:6891–6898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitsiades CS, Mitsiades N, Koutsilieris M (2004) The Akt pathway: molecular targets for anti-cancer drug development. Curr Cancer Drug Targets 4:235–256

    Article  CAS  PubMed  Google Scholar 

  • Mummert ME, Mohamadzadeh M, Mummert DI, Mizumoto N, Takashima A (2000) Development of a peptide inhibitor of hyaluronan-mediated leukocyte trafficking. J Exp Med 192:769–779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Powell JD, Horton MR (2005) Threat matrix: low-molecular-weight hyaluronan (HA) as a danger signal. Immunol Res 31:207–218

    Article  CAS  PubMed  Google Scholar 

  • Shenoy SK, Lefkowitz RJ (2011) β-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32:521–533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sofat N (2009) Analysing the role of endogenous matrix molecules in the development of osteoarthritis. Int J Exp Pathol 90:463–479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stern R, Asari AA, Sugahara KN (2006) Hyaluronan fragments: an information-rich system. Eur J Cell Biol 85:699–715

    Article  CAS  PubMed  Google Scholar 

  • Sun JS, Wu CX, Tsuang YH, Chen LT, Sheu SY (2006) The in vitro effects of dehydroepiandrosterone on chondrocyte metabolism. Osteoarthr Cartil 14:238–249

    Article  PubMed  Google Scholar 

  • Tanimoto K, Yanagida T, Tanne Y, Kamiya T, Huang YC, Mitsuyoshi T, Tanaka N, Tanaka E, Tanne K (2010) Modulation of hyaluronan fragmentation by interleukin-1 beta in synovial membrane cells. Ann Biomed Eng 38:1618–1625

    Article  CAS  PubMed  Google Scholar 

  • Taylor KR, Trowbridge JM, Rudisill JA, Termer CC, Simon JC, Gallo RL (2004) Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J Biol Chem 279:17079–17084

    Article  CAS  PubMed  Google Scholar 

  • Termeer CC, Hennies J, Voith U, Ahrens T, Weiss JM, Prehm P, Simon JC (2000) Oligosaccharides of hyaluronan are potent activators of dendritic cells. J Immunol 165:1863–1870

    Article  CAS  PubMed  Google Scholar 

  • Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, Miyake K, Freudenberg M, Galanos C, Simon JC (2002) Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 195:99–111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xie L, Qiao X, Wu Y, Tang J (2011) β-Arrestin1 mediates the endocytosis and functions of macrophage migration inhibitory factor. PLoS One 6:e16428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu X, Ito T, Tawada A, Maeda H, Yamanokuchi H, Isahara K, Yoshida K, Uchiyama Y, Asari A (2002) Effect of hyaluronan oligosaccharides on the expression of heat shock protein 72. J Biol Chem 277:17308–17314

    Article  CAS  PubMed  Google Scholar 

  • Yang M, He RL, Benovic JL, Ye RD (2009) Beta-arrestin1 interacts with the G-protein subunits beta1gamma2 and promotes beta1gamma2-dependent Akt signalling for NF-kappaB activation. Biochem J 417:287–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe M. Campo.

Additional information

This study was supported by a COFIN 2009 grant from the MIUR, Italy (grant no. 20094C2H2M_003).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campo, G.M., Avenoso, A., D’Ascola, A. et al. Beta-arrestin 1 is involved in the catabolic response stimulated by hyaluronan degradation in mouse chondrocytes. Cell Tissue Res 361, 567–579 (2015). https://doi.org/10.1007/s00441-015-2112-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2112-0

Keywords

Navigation