Skip to main content

Advertisement

Log in

Roles of limbal microvascular net and limbal stroma in regulating maintenance of limbal epithelial stem cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Knowledge of the microenvironment (niche) of stem cells is helpful for stem-cell-based regenerative medicine. In the eye, limbal epithelial stem cells (corneal epithelial stem cells) provide the self-renewal capacity of the corneal epithelium and are essential for maintaining corneal transparency and vision. Limbal epithelial stem cell deficiency results in significant visual deterioration. Successful treatment of this type of blinding disease requires studies of the limbal epithelial stem cells and their microenvironment. We investigate the function of the limbal microvascular net and the limbal stroma in the maintenace of the limbal epithelial stem cell niche in vivo and examine the regulation of limbal epithelial stem cell survival, proliferation and differentiation in vivo. We assess the temporal and spatial changes in the expression patterns of the following markers during a six-month follow-up of various rabbit limbal autograft transplantation models: vascular endothelial cell marker CD31, corneal epithelium differentiation marker K3, limbal epithelial stem-cell-associated markers P63 and ABCG2 and proliferating cell nuclear marker Ki67. Our results suggest that limbal epithelial stem cells cannot maintain their stemness or proliferation without the support of the limbal microvascular net microenvironment. Thus, both the limbal microvascular net and the limbal stroma play important roles as components of the limbal epithelial stem cell niche maintaining limbal epithelial stem cell survival and proliferation and the avoidance of differentiation. The limbal stroma constitutes the structural basis of the limbal epithelial stem cell niche and the limbal microvascular net is a requirement for this niche. These new insights should aid the eventual construction of tissue-engineered cornea for corneal blind patients in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bruckner P (2010) Suprastructures of extracellular matrices: paradigms of functions controlled by aggregates rather than molecules. Cell Tissue Res 339:7–18

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, de Paiva CS, Luo L, Kretzer FL, Pflugfelder SC, Li DQ (2004) Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells 3:355–366

    Article  Google Scholar 

  • Dua HS, Azuara-Blanco A (2000) Limbal stem cells of the corneal epithelium. Surv Ophthalmol 44:415–425

    Article  CAS  PubMed  Google Scholar 

  • Dua HS, Shanmuganathan VA, Powell-Richards AO, Tighe PJ, Joseph A (2005) Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol 89:529–532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Espana EM, Kawakita T, Romano A, Di Pascuale M, Smiddy R, Liu CY, Tseng SC (2003) Stromal niche controls the plasticity of limbal and corneal epithelial differentiation in a rabbit model of recombined tissue. Invest Ophthalmol Vis Sci 44:5130–5135

    Article  PubMed  Google Scholar 

  • Goldberg MFBA (1982) Limbal palisades of Vogt. Trans Am Ophthalmol Soc 80:155–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hernandez Galindo EE, Theiss C, Steuhl KP, Meller D (2003) Expression of Delta Np63 in response to phorbol ester in human limbal epithelial cells expanded on intact human amniotic membrane. Invest Ophthalmol Vis Sci 44:2959–2965

    Article  PubMed  Google Scholar 

  • Huang M, Li N, Wu Z, Wan P, Liang X, Zhang W, Wang X, Li C, Xiao J, Zhou Q, Liu Z, Wang Z (2011) Using acellular porcine limbal stroma for rabbit limbal stem cell microenvironment reconstruction. Biomaterials 32:7812–7821

    Article  CAS  PubMed  Google Scholar 

  • Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    Article  CAS  PubMed  Google Scholar 

  • Kolega J, Manabe M, TT S (1989) Basement membrane heterogeneity and variation in corneal epithelial differentiation. Differentiation 42:54–63

    Article  CAS  PubMed  Google Scholar 

  • Lavker RM (2004) Corneal epithelial stem cells at the limbus: looking at some old problems from a new angle. Exp Eye Res 78:433–446

    Article  CAS  PubMed  Google Scholar 

  • Li W, Johnson SA, Shelley WC, Yoder MC (2004) Hematopoietic stem cell repopulating ability can be maintained in vitro by some primary endothelial cells. Exp Hematol 32:1226–1237

    Article  CAS  PubMed  Google Scholar 

  • Li WHY, Chen YT, Tseng SC (2007) Niche regulation of corneal epithelial stem cells at the limbus. Cell Res 17:26–36

    Article  PubMed Central  PubMed  Google Scholar 

  • Ljubimov AV, Burgeson RE, Butkowski RJ, Michael AF, Sun TT, Kenney MC (1995) Human corneal basement membrane heterogeneity: topographical differences in the expression of type IV collagen and laminin isoforms. Lab Invest 72:461–473

    CAS  PubMed  Google Scholar 

  • Notara M, Daniels JT (2008) Biological principals and clinical potentials of limbal epithelial stem cells. Cell Tissue Res 331:135–143

    Article  PubMed  Google Scholar 

  • Ohneda O, Fennie C, Zheng Z, Donahue C, La H, Villacorta R, Cairns B, Lasky LA (1998) Hematopoietic stem cell maintenance and differentiation are supported by embryonic aorta-gonad-mesonephros region-derived endothelium. Blood 92:908–919

    CAS  PubMed  Google Scholar 

  • Pajoohesh-Ganji A, Stepp MA (2005) In search of markers for the stem cells of the corneal epithelium. Biol Cell 97:265–276

    Article  CAS  PubMed  Google Scholar 

  • Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494

    Article  CAS  PubMed  Google Scholar 

  • Pinnamaneni N, Funderburgh JL (2012) Concise review: stem cells in the corneal stroma. Stem Cells 30:1059–1063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    Article  CAS  PubMed  Google Scholar 

  • Schlotzer-Schrehardt U, Dietrich T, Saito K, Sorokin L, Sasaki T, Paulsson M, Kruse FE (2007) Characterization of extracellular matrix components in the limbal epithelial stem cell compartment. Exp Eye Res 85:845–860

    Article  CAS  PubMed  Google Scholar 

  • Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340

    Article  CAS  PubMed  Google Scholar 

  • Shortt AJSG, Munro PM, Khaw PT, Tuft SJ, Daniels JT (2007) Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in-vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells 25:1402–1409

    Article  PubMed  Google Scholar 

  • Townsend W (1991) The limbal palisades of Vogt. Trans Am Ophthalmol Soc 89:721–756

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang DY, Hsueh YJ, Yang VC, Chen JK (2003) Propagation and phenotypic preservation of rabbit limbal epithelial cells on amniotic membrane. Invest Ophthalmol Vis Sci 44:4698–4704

    Article  PubMed  Google Scholar 

  • Wessel H, Anderson S, Fite D, Halvas E, Hempel J, SundarRaj N (1997) Type XII collagen contributes to diversities in human corneal and limbal extracellular matrices. Invest Ophthalmol Vis Sci 38:2408–2422

    CAS  PubMed  Google Scholar 

  • Xie HT, Chen SY, Li GG, Tseng SC (2011) Limbal epithelial stem/progenitor cells attract stromal niche cells by SDF-1/CXCR4 signaling to prevent differentiation. Stem Cells 29:1874–1885

    Article  CAS  PubMed  Google Scholar 

  • Xie HT, Chen SY, Li GG, Tseng SC (2012) Isolation and expansion of human limbal stromal niche cells. Invest Ophthalmol Vis Sci 53:279–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yiqin D, Funderburgh ML, Mann MM, SundarRaj N, Funderburgh JL (2005) Multipotent stem cells in human corneal stroma. Stem Cells 23:1266–1275

    Article  Google Scholar 

  • Yoshida S, Sukeno M, Nabeshima Y (2007) A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317:1722–1726

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichong Wang.

Additional information

Minghai Huang and Bowen Wang contributed equally to this work.

This study was supported by grant no. 2012AA020507 from the National High Technology Research and Development Program (863 project) of China, grant no. 81270971 from the National Natural Science Foundation of China, grant no. S2012010009113 from the Natural Science Foundation of Guangdong Province of China and grant no. 2012PI05 from the Fundamental Research Funds of State Key Laboratory of Ophthalmology of China.

The authors declare no potential conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Representative time-course of changes in the limbal microvascular net in rabbit transplantaion models observed by the slit lamp method. (A) In the limbal autograft orthotopic transplantation model, the autografts showed ischemia at postoperative day 0 but the limbal microvascular net of the ischemic autografts re-vascularized at postoperative day 3 and restored a regular vasculature loop pattern at postoperative month 1. (B) In the model of the heterotopic transplantation of a limbal autograft into the central cornea, the limbal microvascular net disappeared at postoperative days 3-7. However, in the zone of lamellar limbal excision, an irregular limbal microvascular net showed neo-vascularization on the side of the sclera and even some mild vascular invasion of the cornea at postoperative month 1 (white arrow microvasculature, black arrow ischemic or disappeared microvasculature). Magnification: ×16 (GIF 253 kb)

High resolution image (TIFF 2687 kb)

Figure S2

(A) In the limbal autograft orthotopic transplantation model, epithelial cells in the peripheral corneal part of the limbal autograft were Muc5AC-. (B) In the zone of lamellar limbal excision, some epithelial cells in the peripheral cornea with vascular invasion were Muc5AC+ and exhibited deficient limbal barrier function (blue nuclei, red Muc5AC). Cells overlying the dotted line represent basal cells (white arrow Muc5AC+ cells, namely conjunctival goblet cells). Bars 10 μm (GIF 24 kb)

High resolution image (TIFF 530 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Wang, B., Wan, P. et al. Roles of limbal microvascular net and limbal stroma in regulating maintenance of limbal epithelial stem cells. Cell Tissue Res 359, 547–563 (2015). https://doi.org/10.1007/s00441-014-2032-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2032-4

Keywords

Navigation