Skip to main content

Advertisement

Log in

The effect of glucagon-like peptide-1 in the management of diabetes mellitus: cellular and molecular mechanisms

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Incretins, such as glucagon-like peptide-1 (GLP)-1, have been shown to elevate plasma insulin concentration. The purpose of this study is to investigate the cellular and molecular basis of the beneficial effects of GLP-1. Normal and diabetic male Wistar rats were treated with GLP-1 (50 ng/kg body weight) for 10 weeks. At the end of the experiment, pancreatic tissues were taken for immunohistochemistry, immunoelectron microscopy and real-time polymerase chain reaction studies. Samples of blood were retrieved from the animals for the measurement of enzymes and insulin. The results show that treatment of diabetic rats with GLP-1 caused significant (P < 0.05) reduction in body weight gain and blood glucose level. GLP-1 (10−12–10−6 M) induced significant (P < 0.01) dose-dependent increases in insulin release from the pancreas of normal and diabetic rats compared to basal. Diabetes-induced abnormal liver (aspartate aminotransferase and alanine aminotransferase) and kidney (blood urea nitrogen and uric acid) parameters were corrected in GLP-1-treated rats compared to controls. GLP-1 treatment induced significant (P < 0.05) elevation in the expression of pancreatic duodenal homeobox-1, heat shock protein-70, glutathione peroxidase, insulin receptor and GLP-1-receptor genes in diabetic animals compared to controls. GLP-1 is present in pancreatic beta cells and significantly (P < 0.05) increased the number of insulin-, glutathione reductase- and catalase-immunoreactive islet cells. The results of this study show that GLP-1 is co-localized with insulin and seems to exert its beneficial effects by increasing cellular concentrations of endogenous antioxidant genes and other genes involved in the maintenance of pancreatic beta cell structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DM:

Diabetes mellitus

DPP-4:

Dipeptide peptidase-IV

ELISA:

Enzyme-linked immunosorbent assay

EM:

Electron microscopic

GI:

Gastrointestinal

GLP-1:

Glucagon-like peptide-1

GLP-1r:

Glucagon-like peptide-1 receptor

GPx:

Glutathione peroxidase

GSR:

Glutathione Reductase

HSP-70:

Heat shock protein-70

IPGTT:

Intraperitoneal glucose tolerance test

ROS:

Reactive oxygen species

RT-PCR:

Real time-polymerase chain reaction

SEM:

Standard error of the mean

STZ:

Streptozotocin

T1DM:

Type 1 DM

T2DM:

Type 2 DM

UAEU:

United Arab Emirates University

References

  • Adeghate E (1999) Effect of subcutaneous pancreatic tissue transplants on streptozotocin-induced diabetes in rats. I. Morphological studies on normal, diabetic and transplanted pancreatic tissues. Tissue Cell 31:66–72

    Article  PubMed  CAS  Google Scholar 

  • Adeghate E, Ponery AS (2002) Ghrelin stimulates insulin secretion from the pancreas of normal and diabetic rats. J Neuroendocrinol 14:555–560

    Article  PubMed  CAS  Google Scholar 

  • Adeghate E, Ponery AS (2004) Diabetes mellitus influences the degree of co-localization of calcitonin-gene-related-peptide with insulin and somatostatin in the rat pancreas. Pancreas 29:311–319

    Article  PubMed  CAS  Google Scholar 

  • Amin A, Lotfy M, Mahmoud-Ghoneim D, Adeghate E, Al-Akhras MA, Al-Saadi M, Al-Rahmoun S, Hameed R (2011) Pancreas-protective effects of chlorella in STZ-induced diabetic animal model: insights into the mechanism. J Diabetes Mellit 1(3):36–45

    Article  Google Scholar 

  • Aragon G, Younossi ZM (2010) When and how to evaluate mildly elevated liver enzymes in apparently healthy patients. Cleve Clin J Med 77(3):195–204

    Article  PubMed  Google Scholar 

  • Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterol 132:2131–2157

    Article  CAS  Google Scholar 

  • Bener A, Zirie M, Janahi IM, Al-Hamaq AO, Musallam M, Wareham NJ (2009) Prevalence of diagnosed and undiagnosed diabetes mellitus and its risk factors in a population-based study of Qatar. Diabetes Res Clin Pract 84(1):99–106

    Article  PubMed  Google Scholar 

  • Bouwens L, Rooman I (2005) Regulation of pancreatic beta-cell mass. Physiol Rev 85(4):1255–1270

    Article  PubMed  CAS  Google Scholar 

  • Bucinskaite V, Tolessa T, Pedersen J, Rydqvist B, Zerihun L, Holst JJ, Hellström PM (2009) Receptor-mediated activation of gastric vagal afferents by glucagon-like peptide-1 in the rat. J Neurogastroenterol Motil 21:978–978

    Article  CAS  Google Scholar 

  • Bulchandani D, Nachnani J, Eaton C, Hamburg M (2009) Association of Exenatide with liver enzymes in patients with type 2 diabetes. Curr Opin Endocrinol Diabetes Obes 19(3):114–115

    CAS  Google Scholar 

  • Buse JB, Rosenstock J, Sesti G, Schmidt WE, Montanya E, Brett JH, Zychma M, Blonde L (2009) Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 374(4):39–47

    Article  PubMed  CAS  Google Scholar 

  • Buteau J, El-Assaad W, Rhodes CJ, Rosenberg L, Joly E, Prentki M (2004) Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia 47:806–815

    Article  PubMed  CAS  Google Scholar 

  • Caluwaerts S, Lambin S, van Bree R, Peeters H, Vergote I, Verhaeghe J (2007) Diet-induced obesity in gravid rats engenders early hyperadiposity in the offspring. Metabolism 56:1431–1438

    Article  PubMed  CAS  Google Scholar 

  • Cejkova P, Fojtikova M, Cerna M (2009) Immunomodulatory role of prolactin in diabetes development. Autoimmun Rev 9(1):23–27

    Article  PubMed  CAS  Google Scholar 

  • Cernea S, Raz I (2011) Therapy in the early stage: incretins. Diabetes Care 34(2):S264–S271

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Druker DJ (2005) Therapeutic strategic based on GLP-1 pathway. Adv Stud Med 5(10E):S1069–S1073

    Google Scholar 

  • Fehmann HC, Hering BJ, Wolf MJ, Brandhorst H, Brandhorst D, Bretzel RG, Federlin K, Göke B (1995) The effects of glucagon-like peptide-I (GLP-I) on hormone secretion from isolated human pancreatic islets. Pancreas 11:196–200

    Article  PubMed  CAS  Google Scholar 

  • Fisher TL, White MF (2004) Signaling pathways: the benefits of good communication. Curr Biol 14:R1005–R1007

    Article  PubMed  CAS  Google Scholar 

  • Fujita A, Sasaki H, Ogawa K, Okamoto K, Matsuno S, Matsumoto E, Furuta H, Nishi M, Nakao T, Tsuno T, Taniguchi H, Nanjo K (2005) Increased gene expression of antioxidant enzymes in KKAy diabetic mice but not in STZ diabetic mice. Diabetes Res Clin Pract 69(2):113–119

    Article  PubMed  CAS  Google Scholar 

  • Garber AJ (2011) Incretin effects on β-cell function, replication, and mass. Diabetes Care 34(2):S258–S263

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gezginci-Oktayoglu S, Bolkent S (2009) Exendin-4 exerts its effects through the NGF/p75NTR system in diabetic mouse pancreas. Biochem Cell Biol 87(4):641–651

    Article  PubMed  CAS  Google Scholar 

  • Girard J (2008) The incretins: from the concept to their use in the treatment of type 2 diabetes. Part A: incretins: concept and physiological functions. Diabetes Metab 34:550–559

    Article  PubMed  CAS  Google Scholar 

  • Habib AM, Richards P, Rogers GJ, Reimann F, Gribble FM (2013) Co-localisation and secretion of glucagon-like peptide 1 and peptide YY from primary cultured human L cells. Diabetologia 56:1413–1416

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hamouchene H, Arlt VM, Giddings I, Phillips DH (2011) Influence of cell cycle on responses of MCF-7 cells to benzo[a]pyrene. BMC Med Genom 12:333

    Article  CAS  Google Scholar 

  • Hare KJ, Vilsbøll T, Asmar M, Deacon CF, Knop FK, Holst JJ (2010) The glucagonostatic and insulinotropic effects of glucagon-like peptide 1 contribute equally to its glucose-lowering action. Diabetes 59:1765–1770

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Heller RS, Kieffer TJ, Habener JF (1997) Insulinotropic glucagon-like peptide I receptor expression in glucagon-producing alpha-cells of the rat endocrine pancreas. Diabetes 46(5):785–791

    Article  PubMed  CAS  Google Scholar 

  • Holst JJ (2008) The physiology and pharmacology of incretins in type 2 diabetes mellitus. Diabetes Obes Metab 10:14–21

    Article  CAS  Google Scholar 

  • Hutt DM, Powers ET, Balch WE (2009) The proteostasis boundary in misfolding diseases of membrane traffic. FEBS Lett 583:2639–2646

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Islam MS (2010) Calcium signaling in the islets. Adv Exp Med Biol 654:235–259

    Article  PubMed  CAS  Google Scholar 

  • Kanitkara M, Bhonde RR (2008) Curcumin treatment enhances islet recovery by induction of heat shock response proteins, Hsp70 and heme oxygenase-1, during cryopreservation. Life Sci 82(3–4):182–189

    Article  Google Scholar 

  • Karaca M, Magnan C, Kargar C (2009) Functional pancreatic beta-cell mass: involvement in type 2 diabetes and therapeutic intervention. Diabetes Metab 35:77–84

    Article  PubMed  CAS  Google Scholar 

  • Kawahito S, Kitahata H, Oshita S (2009) Problems associated with glucose toxicity: role of hyperglycemia-induced oxidative stress. World J Gastroenterol 15(33):4137–4142

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kitamura T, Kahn CR, Accili D (2003) Insulin receptor knockout mice. Annu Rev Physiol 65:313–332

    Article  PubMed  CAS  Google Scholar 

  • Kjems LL, Holst JJ, Vølund A, Madsbad S (2003) The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 52:380–386

    Article  PubMed  CAS  Google Scholar 

  • Kumar PJ, Clark ML (2007) Diabetes mellitus and other disorders of metabolism. In: Kumar PJ, Clark ML (eds) Clinical medicine, 6th edn. Saunders, London, pp 1069–1121

    Google Scholar 

  • Larsen MO (2009) Beta-cell function and mass in type 2 diabetes. Dan Med J 56:153–164

    Google Scholar 

  • Leibiger B, Leibiger IB, Moede T, Kemper S, Kulkarni RN, Kahn CR, de Vargas LM, Berggren P-O (2001) Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic beta cells. Mol Cell 7(3):559–570

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Adams L, Broyde A, Fernandez R, Baron AD, Parkes DG (2010) The exenatide analogue AC3174 attenuates hypertension, insulin resistance, and renal dysfunction in Dahl salt-sensitive rats. Cardiovasc Diabetol 9(32):1–10

    Google Scholar 

  • Lotfy M, Singh J, Rashed H, Tariq S, Zilahi E, Adeghate E (2014) Mechanism of the beneficial and protective effects of exenatide in diabetic rats. J Endocrinol 220(3):291–304

    Article  PubMed  CAS  Google Scholar 

  • Mayhew TM, Lucocq JM (2011) Multiple-labelling immunoEM using different sizes of colloidal gold: alternative approaches to test for differential distribution and colocalization in subcellular structures. Histochem Cell Biol 135:317–326

    Article  PubMed  CAS  Google Scholar 

  • Montrose-Rafizadeh C, Wang Y, Janczewski AM, Henderson TE, Egan JM (1997) Overexpression of glucagon-like peptide-1 receptor in an insulin-secreting cell line enhances glucose responsiveness. Mol Cell Endocrinol 130(1–2):109–117

    Article  PubMed  CAS  Google Scholar 

  • Mudaliar S, Henry RR (2010) Effects of incretin hormones on β-cell mass and function, body weight, and hepatic and myocardial function. Am J Med 123(3):S19–S27

    Article  PubMed  CAS  Google Scholar 

  • Park S, Dong X, Fisher TL, Dunn S, Omer AK, Weir G, White MF (2006) Exendin-4 uses Irs2 signaling to mediate pancreatic beta cell growth and function. J Biol Chem 281(2):1159–1168

    Article  PubMed  CAS  Google Scholar 

  • Patel SK, Goyal RK, Anand IS, Shah JS, Patel HU, Patel CN (2006) Glucagon like peptide-1: a new therapeutic target for diabetes mellitus. Indian J Pharmacol 38(4):231–237

    Article  CAS  Google Scholar 

  • Perfeitti R, Zhou J, Doyle ME, Egan J (2000) Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinol 141(12):4600–4605

    Article  Google Scholar 

  • Portha B, Tourrel-Cuzin C, Movassat J (2011) Activation of the GLP-1 receptor signalling pathway: a relevant strategy to repair a deficient beta-cell mass. Exp Diabetes Res 2011:376509

    PubMed  PubMed Central  Google Scholar 

  • Puddu A, Mach F, Nencioni A, Viviani GL, Montecucco F (2013) An emerging role of glucagon-like peptide-1 in preventing advanced-glycation-end-product-mediated damages in diabetes. Mediat Inflamm 2013:591056

    Google Scholar 

  • Robertson RP, Harmon JS (2007) Pancreatic islet β-cell and oxidative stress: the importance of glutathione peroxidase. FEBS Lett 581:3743–3748

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Romaní-Pérez M, Outeiriño-Iglesias V, Gil-Lozano M, González-Matías LC, Mallo F, Vigo E (2013) Pulmonary GLP-1 receptor increases at birth and exogenous GLP-1 receptor agonists augmented surfactant-protein levels in litters from normal and nitrofen-treated pregnant rats. Endocrinol 154(3):1144–1155

    Article  Google Scholar 

  • Salehi M, Aulinger BA, D’Alessio DA (2008) Targeting β-cell mass in type 2 diabetes: promise and limitations of new drugs based on incretins. Endocr Rev 29(3):367–379

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schwartz EA, Koska J, Mullin MP, Syoufi I, Schwenke DC, Reaven PD (2010) Exenatide suppresses postprandial elevations in lipids and lipoproteins in individuals with impaired glucose tolerance and recent onset type 2 diabetes mellitus. Atherosclerosis 212(1):217–222

    Article  PubMed  CAS  Google Scholar 

  • Shu T, Zhu Y, Wang H, Lin Y, Ma Z, Han X (2011) AGEs decrease insulin synthesis in pancreatic β-cell by repressing Pdx-1 protein expression at the post-translational level. PLoS ONE 6(4):e18782

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Song WJ, Seshadri M, Ashraf U, Mdluli T, Mondal P, Keil M, Azevedo M, Kirschner LS, Stratakis CA, Hussain MA (2011) Snapin mediates incretin action and augments glucose-dependent insulin secretion. Cell Metab 13(3):308–319

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Srinivasan K, Ramarao P (2007) Animal models in type 2 diabetes research: an overview. Indian J Med Res 125:451–472

    PubMed  CAS  Google Scholar 

  • Stanley S, Wynne K, McGowan B, Bloom S (2005) Hormonal regulation of food intake. Physiol Rev 85:1131–1158

    Article  PubMed  CAS  Google Scholar 

  • Suen PM, Zou C, Zhang YA, Lau TK, Chan J, Yao KM, Leung PS (2008) PDZ-domain containing-2 (PDZD2) is a novel factor that affects the growth and differentiation of human fetal pancreatic progenitor cells. Int J Biochem Cell Biol 40:789–803

    Article  PubMed  CAS  Google Scholar 

  • Townsend T (2000) A decade of diabetes research and development. Int J Diabetes Metab 8:88–92

    Google Scholar 

  • Vaghasiya JD, Sheth NR, Bhalodia YS, Jivani NP, Shailesh M, Jivani N (2010) Exenatide protects renal ischemia reperfusion injury in type 2 diabetes mellitus. Int J Diabetes Dev Ctries 30(4):217–225

    Article  Google Scholar 

  • Vetter ML, Cardillo S, Rickels MR, Iqbal N (2009) Narrative review: effect of bariatric surgery on type 2 diabetes mellitus. Ann Intern Med 150:94–103

    Article  PubMed  Google Scholar 

  • Whalley NM, Pritchard LE, Smith DM (2011) White A. Processing of proglucagon to GLP-1 in pancreatic α-cells: is this a paracrine mechanism enabling GLP-1 to act on β-cells? J Endocrinol 211:99–106

    Article  PubMed  CAS  Google Scholar 

  • Wideman RD, Kieffer TJ (2004) Glucose-dependent insulinotropic polypeptide as a regulator of beta cell function and fate. Horm Metab Res 36:782–786

    Article  PubMed  CAS  Google Scholar 

  • Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. BioTech 39:75–85

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by a grant from the United Arab Emirates University.

Conflicts of interest

None.

Author contributions

ML, JS and EA planned and wrote the manuscript. HR played a major role in the in vitro study and immunohistochemistry. ST made contribution to the transmission electron microscopy section and EZ played a major role in the gene expression study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest Adeghate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfy, M., Singh, J., Rashed, H. et al. The effect of glucagon-like peptide-1 in the management of diabetes mellitus: cellular and molecular mechanisms. Cell Tissue Res 358, 343–358 (2014). https://doi.org/10.1007/s00441-014-1959-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1959-9

Keywords

Navigation