Skip to main content

Advertisement

Log in

Multiple-labelling immunoEM using different sizes of colloidal gold: alternative approaches to test for differential distribution and colocalization in subcellular structures

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Various methods for quantifying cellular immunogold labelling on transmission electron microscope thin sections are currently available. All rely on sound random sampling principles and are applicable to single immunolabelling across compartments within a given cell type or between different experimental groups of cells. Although methods are also available to test for colocalization in double/triple immunogold labelling studies, so far, these have relied on making multiple measurements of gold particle densities in defined areas or of inter-particle nearest neighbour distances. Here, we present alternative two-step approaches to codistribution and colocalization assessment that merely require raw counts of gold particles in distinct cellular compartments. For assessing codistribution over aggregate compartments, initial statistical evaluation involves combining contingency table and chi-squared analyses to provide predicted gold particle distributions. The observed and predicted distributions allow testing of the appropriate null hypothesis, namely, that there is no difference in the distribution patterns of proteins labelled by different sizes of gold particle. In short, the null hypothesis is that of colocalization. The approach for assessing colabelling recognises that, on thin sections, a compartment is made up of a set of sectional images (profiles) of cognate structures. The approach involves identifying two groups of compartmental profiles that are unlabelled and labelled for one gold marker size. The proportions in each group that are also labelled for the second gold marker size are then compared. Statistical analysis now uses a 2 × 2 contingency table combined with the Fisher exact probability test. Having identified double labelling, the profiles can be analysed further in order to identify characteristic features that might account for the double labelling. In each case, the approach is illustrated using synthetic and/or experimental datasets and can be refined to correct observed labelling patterns to specific labelling patterns. These simple and efficient approaches should be of more immediate utility to those interested in codistribution and colocalization in multiple immunogold labelling investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agresti A (1992) A survey of exact inference for contingency tables. Stat Sci 7:131–177

    Article  Google Scholar 

  • Baddeley AJ, Gundersen HJG, Cruz-Orive LM (1986) Estimation of surface area from vertical sections. J Microsc 142:259–276

    PubMed  CAS  Google Scholar 

  • Bendayan M (1982) Double immunocytochemical labelling applying the protein A gold technique. J Histochem Cytochem 30:81–85

    PubMed  CAS  Google Scholar 

  • D’Amico F, Skarmoutsou E (2008a) Quantifying immunogold labelling in transmission electron microscopy. J Microsc 230:9–15

    Article  PubMed  Google Scholar 

  • D’Amico F, Skarmoutsou E (2008b) Clustering and colocalization in transmission immunoelectron microscopy: a brief review. Micron 39:1–6

    Article  PubMed  Google Scholar 

  • Daly LE, Bourke GJ (2000) Interpretation and uses of medical statistics. Blackwell Science Ltd, Oxford

    Book  Google Scholar 

  • Dutton AH, Tokuyasu KT, Singer SJ (1979) Iron-dextran antibody conjugates: general method for simultaneous staining of two components in high-resolution immunoelectron microscopy. Proc Natl Acad Sci USA 76:3392–3396

    Article  PubMed  CAS  Google Scholar 

  • Fisher RA (1922) On the interpretation of χ2 from contingency tables and the calculation of P. J R Stat Soc 85:87–94

    Article  Google Scholar 

  • Geiger B, Dutton AH, Tokuyasu KT, Singer SJ (1981) Immunoelectron microscope studies of membrane-microfilament interactions: distribution of α actinin, tropomyosin and vinculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells. J Cell Biol 91:614–628

    Article  PubMed  CAS  Google Scholar 

  • Geuze HJ, Slot JW, van der Ley P, Scheffer RCT (1981) Use of colloidal gold particles in double-labelling immunoelectron microscopy of ultrathin tissue sections. J Cell Biol 89:653–659

    Article  PubMed  CAS  Google Scholar 

  • Griffiths G (1993) Fine structure immunocytochemistry. Springer Verlag, Heidelberg

    Google Scholar 

  • Gundersen HJG (1977) Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. J Microsc 111:219–223

    Google Scholar 

  • Gundersen HJG, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263

    PubMed  CAS  Google Scholar 

  • Gundersen HJG, Jensen EBV, Kiêu K, Nielsen J (1999) The efficiency of systematic sampling in stereology—reconsidered. J Microsc 193:199–211

    Article  PubMed  CAS  Google Scholar 

  • Habermann A, Krijnse-Locker J, Oberwinkler H, Eckhardt M, Homann S, Andrew A, Strebel K, Kräusslich H-G (2010) CD317/tetherin is enriched in the HIV-1 envelope and downregulated from the plasma membrane upon virus infection. J Virol 84:4646–4658

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara H, Aoki T, Suzuki T, Takata K (2010) Double-label immunoelectron microscopy for studying the colocalization of proteins in cultured cells. Methods Mol Biol 657:249–257

    Article  PubMed  CAS  Google Scholar 

  • Howard CV, Reed MG (2005) Unbiased stereology. Three-dimensional measurement in microscopy, 2nd edn. Garland Science/Bios Scientific Publishers, Abingdon

    Google Scholar 

  • Langanger G, Moeremans M, Daneels G, Sobieszek A, De Brabander M, De Mey J (1986) The molecular organisation of myosin in stress fibers of cultured cells. J Cell Biol 102:200–209

    Article  PubMed  CAS  Google Scholar 

  • Lucocq J (2008) Quantification of structures and gold labelling in transmission electron microscopy. Methods Cell Biol 88:59–82

    Article  PubMed  Google Scholar 

  • Lucocq JM, Gawden-Bone C (2009) A stereological approach for estimation of cellular immunolabeling and its spatial distribution in oriented sections using the rotator. J Histochem Cytochem 57:709–719

    Article  PubMed  CAS  Google Scholar 

  • Lucocq JM, Gawden-Bone C (2010) Quantitative assessment of specificity in immunoelectron microscopy. J Histochem Cytochem 58:917–927

    Article  PubMed  CAS  Google Scholar 

  • Lucocq JM, Habermann A, Watt S, Backer JM, Mayhew TM, Griffiths G (2004) A rapid method for assessing the distribution of gold labeling on thin sections. J Histochem Cytochem 52:991–1000

    Article  PubMed  CAS  Google Scholar 

  • Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Statist 18:50–60

    Article  Google Scholar 

  • Mattfeldt T, Mall G, Gharehbaghi H, Möller P (1990) Estimation of surface area and length with the orientator. J Microsc 159:301–317

    PubMed  CAS  Google Scholar 

  • Mayhew TM (2008) Taking tissue samples from the placenta: an illustration of principles and strategies. Placenta 29:1–14

    Article  PubMed  CAS  Google Scholar 

  • Mayhew TM (2009) Quantifying immunogold localization patterns on electron microscopic thin sections of placenta: recent developments. Placenta 30:565–570

    Article  PubMed  CAS  Google Scholar 

  • Mayhew TM, Desoye G (2004) A simple method for comparing immunogold distributions in two or more experimental groups illustrated using GLUT1 labelling of isolated trophoblast cells. Placenta 25:580–584

    Article  PubMed  CAS  Google Scholar 

  • Mayhew TM, Lucocq JM (2008a) Quantifying immunogold labelling patterns of cellular compartments when they comprise mixtures of membranes (surface-occupying) and organelles (volume-occupying). Histochem Cell Biol 129:367–378

    Article  PubMed  CAS  Google Scholar 

  • Mayhew TM, Lucocq JM (2008b) Developments in cell biology for quantitative immunoelectron microscopy based on thin sections—a review. Histochem Cell Biol 130:299–313

    Article  PubMed  CAS  Google Scholar 

  • Mayhew TM, Lucocq JM, Griffiths G (2002) Relative labelling index: a novel stereological approach to test for non-random immunogold labelling of organelles and membranes on transmission electron microscopy thin sections. J Microsc 205:153–164

    Article  PubMed  CAS  Google Scholar 

  • Mayhew T, Griffiths G, Habermann A, Lucocq J, Emre N, Webster P (2003) A simpler way of comparing the labelling densities of cellular compartments illustrated using data from VPARP and LAMP-1 immunogold labelling experiments. Histochem Cell Biol 119:333–341

    PubMed  CAS  Google Scholar 

  • Mayhew T, Griffiths G, Lucocq J (2004) Applications of an efficient method for comparing immunogold labelling patterns in the same sets of compartments in different groups of cells. Histochem Cell Biol 122:171–177

    Article  PubMed  CAS  Google Scholar 

  • Mayhew TM, Mühlfeld C, Vanhecke D, Ochs M (2009) A review of recent methods for efficiently quantifying immunogold and other nanoparticles using TEM sections through cells, tissues and organs. Ann Anat 191:153–170

    Article  PubMed  CAS  Google Scholar 

  • Mühlfeld C, Richter J (2006) High-pressure freezing and freeze substitution of rat myocardium for immunogold labelling of connexin 43. Anat Rec 288A:1059–1067

    Article  Google Scholar 

  • Nithipongvanitch R, Ittarat W, Velez JM, Zhao R, St Clair DK, Oberley TD (2007) Evidence for p53 as guardian of the cardiomyocyte mitochondrial genome following acute adriamycin treatment. J Histochem Cytochem 55:629–639

    Article  PubMed  CAS  Google Scholar 

  • Nyengaard JR, Gundersen HJG (1992) The isector: a simple and direct method for generating isotropic, uniform random sections from small specimens. J Microsc 165:427–431

    Google Scholar 

  • Oberley TD, Swanlund JM, Zhang HJ, Kregel KC (2008) Aging results in increased autophagy of mitochondria and protein nitration in rat hepatocytes following heat stress. J Histochem Cytochem 56:615–627

    Article  PubMed  CAS  Google Scholar 

  • Orci L, Ravazzola M, Amherdt M, Louvard D, Perrelet A (1985) Clathrin-immunoreactive sites in the Golgi apparatus are concentrated at the trans pole in polypeptide hormone-secreting cells. Proc Natl Acad Sci USA 82:5385–5389

    Article  PubMed  CAS  Google Scholar 

  • Petrie A, Sabin C (2000) Medical statistics at a glance. Blackwell Science Ltd, Oxford

    Google Scholar 

  • Portolani M, Beretti F, Bartoletti AM, Pietrosemoli P, Salvioli S, Franceschi C, Sena P, De Pol A (2008) Propagation of a transmissible cytotoxic activity on cultures of human peripheral blood lymphocytes. New Microbiol 31:417–422

    PubMed  CAS  Google Scholar 

  • Potolicchio I, Chitta S, Xu X, Fonseca D, Crisi G, Horejsi V, Strominger JL, Stern LJ, Raposo G, Santambrogio L (2005) Conformational variation of surface class II MHC proteins during myeloid dendritic cell differentiation accompanies structural changes in lysosomal MIIC. J Immunol 175:4935–4947

    PubMed  CAS  Google Scholar 

  • Raposo G, Tenza D, Murphy DM, Berson JF, Marks MS (2001) Distinct protein sorting and localization to premelanosomes, melanosomes, and lysosomes in pigmented melanocytic cells. J Cell Biol 152:809–823

    Article  PubMed  CAS  Google Scholar 

  • Ravazzola M, Orci L (1980) Glucagon and glicentin immunoreactivity are topologically segregated in the α granule of the human pancreatic A cell. Nature 284:66–67

    Article  PubMed  CAS  Google Scholar 

  • Ruel K, Berrio-Sierra J, Derikvand MM, Pollet B, Thevenin J, Lapierre C, Jouanin L, Joseleau J-P (2009) Impact of CCR1 silencing on the assembly of lignified secondary walls in Arabidopsis thaliana. New Phytol 184:99–113

    Article  PubMed  CAS  Google Scholar 

  • Santambrogio L, Potolicchio I, Fessler SP, Wong S-H, Raposo G, Strominger JL (2005) Involvement of caspase-cleaved and intact adaptor protein 1 complex in endosomal remodelling in maturing dendritic cells. Nat Immunol 6:1020–1028

    Article  PubMed  CAS  Google Scholar 

  • Slot JW, Geuze HJ (1984) Gold markers for single and double immunolabelling of ultrathin cryosections. In: Polak JM, Varndell IM (eds) Immunolabelling for electron microscopy. Elsevier, Amsterdam, pp 129–142

    Google Scholar 

  • Slot JW, Geuze HJ, Gigengack S, James DE, Lienhard GE (1991) Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proc Natl Acad Sci USA 88:7815–7819

    Article  PubMed  CAS  Google Scholar 

  • Ueda S, Kitazawa S, Ishida K, Nishikawa Y, Matsui M, Matsumoto H, Aoki T, Nozaki S, Takeda T, Tamori Y, Kahn CR, Kataoka T, Satoh T (2010) Crucial role of the small GTPase Rac1 in insulin-stimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma. FASEB J 24:2254–2261

    Article  PubMed  CAS  Google Scholar 

  • Wang BL, Larsson LI (1985) Simultaneous demonstration of multiple antigens by indirect immune-fluorescence or immunogold staining. Histochemistry 83:47–56

    Article  PubMed  CAS  Google Scholar 

  • Zhou QJ, Sun J, Zhai YJ, Sun F (2010) Prokaryotic expression of active mitochondrial uncoupling protein 1. Prog Biochem Biophys 37:56–62

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to fellow teachers on the EMBO-sponsored Practical Courses in Electron Microscopy and Stereology in Cell Biology. They have been a constant source of stimulation and encouragement. Our thanks also go to Professor Stephen McKenna (School of Computing, University of Dundee) for helpful discussion on alternative statistical models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry M. Mayhew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayhew, T.M., Lucocq, J.M. Multiple-labelling immunoEM using different sizes of colloidal gold: alternative approaches to test for differential distribution and colocalization in subcellular structures. Histochem Cell Biol 135, 317–326 (2011). https://doi.org/10.1007/s00418-011-0788-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-011-0788-0

Keywords

Navigation