Skip to main content

Advertisement

Log in

Expression of SGTA correlates with neuronal apoptosis and reactive gliosis after spinal cord injury

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Small glutamine-rich tetratricopeptide repeat (TPR)-containing protein alpha (SGTA) is a novel TPR-containing protein involved in various biological processes. However, the expression and roles of SGTA in the central nervous system remain unknown. We have produced an acute spinal cord injury (SCI) model in adult rats and found that SGTA protein levels first significantly increase, reach a peak at day 3 and then gradually return to normal level at day 14 after SCI. These changes are striking in neurons, astrocytes and microglia. Additionally, colocalization of SGTA/active caspase-3 has been detected in neurons and colocalization of SGTA/proliferating cell nuclear antigen has been detected in astrocytes and microglial. In vitro, SGTA depletion by short interfering RNA inhibits astrocyte proliferation and decreases cyclinA and cyclinD1 protein levels. SGTA knockdown also reduces neuronal apoptosis. We speculate that SGTA is involved in biochemical and physiological responses after SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SGTA:

Small glutamine-rich tetratricopeptide repeat-containing protein alpha

SCI:

Spinal cord injury

TPR:

Tetratricopeptide repeat

CNS:

Central nervous system

PCNA:

Proliferating cell nuclear antigen

NeuN:

Neuronal nuclear antigen

GFAP:

Glial fibrillary acidic protein

IBa1:

Ionized calcium-binding adapter molecule 1

siRNA:

Short interfering RNA

References

  • Becker EB, Bonni A (2004) Cell cycle regulation of neuronal apoptosis in development and disease. Prog Neurobiol 72:1–25

    Article  PubMed  CAS  Google Scholar 

  • Boonstra J (2003) Progression through the G1-phase of the on-going cell cycle. J Cell Biochem 90:244–252

    Article  PubMed  CAS  Google Scholar 

  • Buchanan G, Ricciardelli C, Harris JM, Prescott J, Yu ZC, Jia L, Butler LM, Marshall VR, Scher HI, Gerald WL, Coetzee GA, Tilley WD (2007) Control of androgen receptor signaling in prostate cancer by the cochaperone small glutamine rich tetratricopeptide repeat containing protein alpha. Cancer Res 67:10087–10096

    Article  PubMed  CAS  Google Scholar 

  • Byrnes KR, Stoica BA, Fricke S, Di Giovanni S, Faden AI (2007) Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain 130:2977–2992

    Article  PubMed  Google Scholar 

  • Cernak I, Stoica B, Byrnes KR, Di Giovanni S, Faden AI (2005) Role of the cell cycle in the pathobiology of central nervous system trauma. Cell Cycle 4:1286–1293

    Article  PubMed  CAS  Google Scholar 

  • Chartron JW, VanderVelde DG, Clemons WM Jr (2012) Structures of the Sgt2/SGTA dimerization domain with the Get5/UBL4A UBL domain reveal an interaction that forms a conserved dynamic interface. Cell Rep 2:1620–1632

    Article  PubMed  CAS  Google Scholar 

  • Cziepluch C, Kordes E, Poirey R, Grewenig A, Rommelaere J, Jauniaux JC (1998) Identification of a novel cellular TPR-containing protein, SGT, that interacts with the nonstructural protein NS1 of parvovirus H-1. J Virol 72:4149–4156

    PubMed  CAS  PubMed Central  Google Scholar 

  • Davies SJ, Field PM, Raisman G (1996) Regeneration of cut adult axons fails even in the presence of continuous aligned glial pathways. Exp Neurol 142:203–216

    Article  PubMed  CAS  Google Scholar 

  • Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI (2003) Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol 53:454–468

    Article  PubMed  Google Scholar 

  • Di Giovanni S, Movsesyan V, Ahmed F, Cernak I, Schinelli S, Stoica B, Faden AI (2005) Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A 102:8333–8338

    Article  PubMed  PubMed Central  Google Scholar 

  • Draetta GF (1994) Mammalian G1 cyclins. Curr Opin Cell Biol 6:842–846

    Article  PubMed  CAS  Google Scholar 

  • Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont AS (2001) Acute spinal cord injury. Part I. Pathophysiologic mechanisms. Clin Neuropharmacol 24:254–264

    Article  PubMed  CAS  Google Scholar 

  • Gruner JA (1992) A monitored contusion model of spinal cord injury in the rat. J Neurotrauma 9:123–128

    Article  PubMed  CAS  Google Scholar 

  • Harrop JS, Sharan AD, Przybylski GJ (2000) Epidemiology of spinal cord injury after acute odontoid fractures. Neurosurg Focus 8:e4

    PubMed  CAS  Google Scholar 

  • Hoke A, Silver J (1994) Heterogeneity among astrocytes in reactive gliosis. Perspect Dev Neurobiol 2:269–274

    PubMed  CAS  Google Scholar 

  • Kabadi SV, Stoica BA, Byrnes KR, Hanscom M, Loane DJ, Faden AI (2012) Selective CDK inhibitor limits neuroinflammation and progressive neurodegeneration after brain trauma. J Cereb Blood Flow Metab 32:137–149

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kato H, Takahashi A, Itoyama Y (2003) Cell cycle protein expression in proliferating microglia and astrocytes following transient global cerebral ischemia in the rat. Brain Res Bull 60:215–221

    Article  PubMed  CAS  Google Scholar 

  • Kordes E, Savelyeva L, Schwab M, Rommelaere J, Jauniaux JC, Cziepluch C (1998) Isolation and characterization of human SGT and identification of homologues in Saccharomyces cerevisiae and Caenorhabditis elegans. Genomics 52:90–94

    Article  PubMed  CAS  Google Scholar 

  • Liou ST, Wang C (2005) Small glutamine-rich tetratricopeptide repeat-containing protein is composed of three structural units with distinct functions. Arch Biochem Biophys 435:253–263

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Wang Y, Cheng C, Chen Y, Shi S, Qin J, Xiao F, Zhou D, Lu M, Lu Q, Shen A (2010) A relationship between p27 (kip1) and Skp2 after adult brain injury: implications for glial proliferation. J Neurotrauma 27:361–371

    Article  PubMed  Google Scholar 

  • Lu C, Liu G, Cui X, Zhang J, Wei L, Wang Y, Yang X, Liu Y, Cong X, Lv L, Ni R, Huang X (2014) Expression of SGTA correlates with prognosis and tumor cell proliferation in human hepatocellular carcinoma. Pathol Oncol Res 20:51–60

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Ashwell KW, Waite P (2000) Advances in secondary spinal cord injury: role of apoptosis. Spine 25:1859–1866

    Article  PubMed  CAS  Google Scholar 

  • McDonald JW, Sadowsky C (2002) Spinal-cord injury. Lancet 359:417–425

    Article  PubMed  Google Scholar 

  • Morris GF, Mathews MB (1989) Regulation of proliferating cell nuclear antigen during the cell cycle. J Biol Chem 264:13856–13864

    PubMed  CAS  Google Scholar 

  • Nguyen MD, Mushynski WE, Julien JP (2002) Cycling at the interface between neurodevelopment and neurodegeneration. Cell Death Differ 9:1294–1306

    Article  PubMed  CAS  Google Scholar 

  • Nishitani H, Lygerou Z (2002) Control of DNA replication licensing in a cell cycle. Genes Cells 7:523–534

    Article  PubMed  CAS  Google Scholar 

  • Philp LK, Butler MS, Hickey TE, Butler LM, Tilley WD, Day TK (2013) SGTA: a new player in the molecular co-chaperone game. Horm Cancer 4:343–357

    Article  PubMed  CAS  Google Scholar 

  • Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW (1999) Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 30:77–105

    Article  PubMed  CAS  Google Scholar 

  • Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    Article  PubMed  CAS  Google Scholar 

  • Tator CH (1996) Experimental and clinical studies of the pathophysiology and management of acute spinal cord injury. J Spinal Cord Med 19:206–214

    PubMed  CAS  Google Scholar 

  • Tian DS, Yu ZY, Xie MJ, Bu BT, Witte OW, Wang W (2006) Suppression of astroglial scar formation and enhanced axonal regeneration associated with functional recovery in a spinal cord injury rat model by the cell cycle inhibitor olomoucine. J Neurosci Res 84:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Shen H, Wang Y, Li Z, Yin H, Zong H, Jiang J, Gu J (2005) Overexpression of small glutamine-rich TPR-containing protein promotes apoptosis in 7721 cells. FEBS Lett 579:1279–1284

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Redecker C, Yu ZY, Xie MJ, Tian DS, Zhang L, Bu BT, Witte OW (2008) Rat focal cerebral ischemia induced astrocyte proliferation and delayed neuronal death are attenuated by cyclin-dependent kinase inhibition. J Clin Neurosci 15:278–285

    Article  PubMed  CAS  Google Scholar 

  • Wang ZB, Liu YQ, Cui YF (2005) Pathways to caspase activation. Cell Biol Int 29:489–496

    Article  PubMed  CAS  Google Scholar 

  • Winnefeld M, Rommelaere J, Cziepluch C (2004) The human small glutamine-rich TPR-containing protein is required for progress through cell division. Exp Cell Res 293:43–57

    Article  PubMed  CAS  Google Scholar 

  • Winnefeld M, Grewenig A, Schnolzer M, Spring H, Knoch TA, Gan EC, Rommelaere J, Cziepluch C (2006) Human SGT interacts with Bag-6/Bat-3/Scythe and cells with reduced levels of either protein display persistence of few misaligned chromosomes and mitotic arrest. Exp Cell Res 312:2500–2514

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Stoica BA, Faden AI (2011) Cell cycle activation and spinal cord injury. Neurotherapeutics 8:221–228

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang X, Cheng L, Li M, Shi H, Ren H, Ding Z, Liu F, Wang Y, Cheng C (2014) High expression of SGTA in esophageal squamous cell carcinoma correlates with proliferation and poor prognosis. J Cell Biochem 115:141–150

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Zhang Q, Yu Z, Zhang L, Tian D, Zhu S, Bu B, Xie M, Wang W (2007) Inhibiting cell cycle progression reduces reactive astrogliosis initiated by scratch injury in vitro and by cerebral ischemia in vivo. Glia 55:546–558

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youhua Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (no. 81171140, no. 31300902), the Colleges and Universities in the Natural Science Research Project of Jiangsu Province (13KJB310009) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Xia, X., Zhu, X. et al. Expression of SGTA correlates with neuronal apoptosis and reactive gliosis after spinal cord injury. Cell Tissue Res 358, 277–288 (2014). https://doi.org/10.1007/s00441-014-1946-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1946-1

Keywords

Navigation