Skip to main content
Log in

Temporal and Spatial Expression of LGR5 After Acute Spinal Cord Injury in Adult Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a well-characterized marker of stem cell and cancer stem cells (CSCs), is best known as a transmembrance receptor for increases canonical Wnt signaling amplitude. In addition, in some types of human cancers, LGR5 has been found to be overexpressed. However, the distribution and function of LGR5 in spinal cord injury (SCI) are still unknown. In this study, we examined LGR5 expression and cellular localization in rats following acute SCI. Western blot analysis and immunohistochemistry exhibited an important upregulation of LGR5 in injury spinal cord. Double immunofluorescence staining showed that LGR5 was co-expressed with glial fibrillary acidic protein (GFAP). Moreover, we detected that PCNA had colocalization with LGR5 and GFAP after SCI. In the vitro model, we could find the enhanced expression of LGR5 in the primary astrocyte which was induced by the lipopolysaccharide (LPS). In particular, we found the significantly decreased ability for proliferation when this LGR5-specific siRNA transfected primary astrocytes. In a word, this is the first description of LGR5 expression in spinal cord injury. These data indicated that LGR5 might be of great significance in CNS pathophysiology after SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LGR5:

Leucine-rich repeat-containing G-protein coupled receptor 5

SCI:

Spinal cord injury

CNS:

Central nervous system

SD:

Sprague–Dawley

NeuN:

Neuronal nuclear antigen

GFAP:

Glial fibrillary acidic protein

IBa1:

Ionized calcium-binding adapter molecule 1

siRNA:

Short interfering RNA

References

  1. Cheng C, Gao S, Zhao J, Niu S, Chen M, Li X, Qin J, Shi S, Guo Z, Shen A (2008) Spatiotemporal patterns of postsynaptic density (PSD)-95 expression after rat spinal cord injury. Neuropathol Appl Neurobiol 34(3):340–356. doi:10.1111/j.1365-2990.2007.00917.x

    Article  CAS  PubMed  Google Scholar 

  2. Zeinalizadeh M, Hussain Khan Z (2015) Spinal cord injured patients: bait for research in the current millennium. Acta Med Iran 53(11):667–668

    PubMed  Google Scholar 

  3. Harnish CR, Daniels JA, Caruso D (2016) Training response to high-intensity interval training in a 42-year-old man with chronic spinal cord injury. J Spinal Cord Med. doi:10.1080/10790268.2015.1136783

    PubMed  Google Scholar 

  4. Davies SJ, Field PM, Raisman G (1996) Regeneration of cut adult axons fails even in the presence of continuous aligned glial pathways. Exp Neurol 142(2):203–216. doi:10.1006/exnr.1996.0192

    Article  CAS  PubMed  Google Scholar 

  5. Alonso-Calvino E, Martinez-Camero I, Fernandez-Lopez E, Humanes-Valera D, Foffani G, Aguilar J (2016) Increased responses in the somatosensory thalamus immediately after spinal cord injury. Neurobiol Dis 87:39–49. doi:10.1016/j.nbd.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  6. He B, Nan G (2015) Pulmonary edema and hemorrhage after acute spinal cord injury in rats. Spine J. doi:10.1016/j.spinee.2015.11.065

    Google Scholar 

  7. Bramanti V, Tomassoni D, Grasso S, Bronzi D, Napoli M, Campisi A, Li Volti G, Ientile R, Amenta F, Avola R (2012) Cholinergic precursors modulate the expression of heme oxigenase-1, p21 during astroglial cell proliferation and differentiation in culture. Neurochem Res 37(12):2795–2804. doi:10.1007/s11064-012-0873-3

    Article  CAS  PubMed  Google Scholar 

  8. Labombarda F, Jure I, Gonzalez S, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF (2015) A functional progesterone receptor is required for immunomodulation, reduction of reactive gliosis and survival of oligodendrocyte precursors in the injured spinal cord. J Steroid Biochem Mol Biol 154:274–284. doi:10.1016/j.jsbmb.2015.09.011

    Article  CAS  PubMed  Google Scholar 

  9. Duan C, Liu Y, Lu L, Cai R, Xue H, Mao X, Chen C, Qian R, Zhang D, Shen A (2015) CDK14 contributes to reactive gliosis via interaction with cyclin Y in rat model of spinal cord injury. J Mol Neurosci 57(4):571–579. doi:10.1007/s12031-015-0639-x

    Article  CAS  PubMed  Google Scholar 

  10. Bramanti V, Grasso S, Tibullo D, Giallongo C, Raciti G, Viola M, Avola R (2015) Modulation of extracellular signal-related kinase, cyclin D1, glial fibrillary acidic protein, and vimentin expression in estradiol-pretreated astrocyte cultures treated with competence and progression growth factors. J Neurosci Res 93(9):1378–1387. doi:10.1002/jnr.23606

    Article  CAS  PubMed  Google Scholar 

  11. Bramanti V, Grasso S, Tibullo D, Giallongo C, Pappa R, Brundo MV, Tomassoni D, Viola M, Amenta F, Avola R (2016) Neuroactive molecules and growth factors modulate cytoskeletal protein expression during astroglial cell proliferation and differentiation in culture. J Neurosci Res 94(1):90–98. doi:10.1002/jnr.23678

    Article  CAS  PubMed  Google Scholar 

  12. Grasso S, Bramanti V, Tomassoni D, Bronzi D, Malfa G, Traini E, Napoli M, Renis M, Amenta F, Avola R (2014) Effect of lipoic acid and alpha-glyceryl-phosphoryl-choline on astroglial cell proliferation and differentiation in primary culture. J Neurosci Res 92(1):86–94. doi:10.1002/jnr.23289

    Article  CAS  PubMed  Google Scholar 

  13. Bramanti V, Tomassoni D, Avitabile M, Amenta F, Avola R (2010) Biomarkers of glial cell proliferation and differentiation in culture. Front Biosci 2:558–570

    Google Scholar 

  14. Wang T, Yuan W, Liu Y, Zhang Y, Wang Z, Zhou X, Ning G, Zhang L, Yao L, Feng S, Kong X (2015) The role of the JAK-STAT pathway in neural stem cells, neural progenitor cells and reactive astrocytes after spinal cord injury. Biomed Rep 3(2):141–146. doi:10.3892/br.2014.401

    PubMed  Google Scholar 

  15. Zhang S, Huan W, Wei H, Shi J, Fan J, Zhao J, Shen A, Teng H (2013) FOXO3a/p27kip1 expression and essential role after acute spinal cord injury in adult rat. J Cell Biochem 114(2):354–365. doi:10.1002/jcb.24371

    Article  CAS  PubMed  Google Scholar 

  16. Shen A, Liu Y, Zhao J, Qin J, Shi S, Chen M, Gao S, Xiao F, Lu Q, Cheng C (2008) Temporal-spatial expressions of p27kip1 and its phosphorylation on Serine-10 after acute spinal cord injury in adult rat: Implications for post-traumatic glial proliferation. Neurochem Int 52(6):1266–1275. doi:10.1016/j.neuint.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  17. Chen Q, Cao HZ, Zheng PS (2014) LGR5 promotes the proliferation and tumor formation of cervical cancer cells through the Wnt/beta-catenin signaling pathway. Oncotarget 5(19):9092–9105. doi:10.18632/oncotarget.2377

    Article  PubMed  PubMed Central  Google Scholar 

  18. Forgham H, Johnson D, Carter N, Veuger S, Carr-Wilkinson J (2015) Stem cell markers in neuroblastoma–an emerging role for LGR5. Front Cell Dev Biol 3:77. doi:10.3389/fcell.2015.00077

    Article  PubMed  PubMed Central  Google Scholar 

  19. Junttila MR, Mao W, Wang X, Wang BE, Pham T, Flygare J, Yu SF, Yee S, Goldenberg D, Fields C, Eastham-Anderson J, Singh M, Vij R, Hongo JA, Firestein R, Schutten M, Flagella K, Polakis P, Polson AG (2015) Targeting LGR5+ cells with an antibody-drug conjugate for the treatment of colon cancer. Sci Transl Med 7(314):314ra186. doi:10.1126/scitranslmed.aac7433

    Article  PubMed  Google Scholar 

  20. Miao J, Jiang Y, Wang D, Zhou J, Fan C, Jiao F, Liu B, Zhang J, Wang Y, Zhang Q (2015) Trichosanthin suppresses the proliferation of glioma cells by inhibiting LGR5 expression and the Wnt/beta-catenin signaling pathway. Oncol Rep 34(6):2845–2852. doi:10.3892/or.2015.4290

    PubMed  PubMed Central  Google Scholar 

  21. Hirsch D, Hu Y, Ried T, Moll R, Gaiser T (2014) Transcriptome profiling of LGR5 positive colorectal cancer cells. Genom Data 2:212–215. doi:10.1016/j.gdata.2014.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  22. Su S, Hong F, Liang Y, Zhou J, Liang Y, Chen K, Wang X, Wang Z, Wang Z, Chang C, Han W, Gong W, Qin H, Jiang B, Xiong H, Peng L (2015) Lgr5 Methylation in cancer stem cell differentiation and prognosis-prediction in colorectal cancer. PloS One 10(11):e0143513. doi:10.1371/journal.pone.0143513

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang W, Redecker C, Yu ZY, Xie MJ, Tian DS, Zhang L, Bu BT, Witte OW (2008) Rat focal cerebral ischemia induced astrocyte proliferation and delayed neuronal death are attenuated by cyclin-dependent kinase inhibition. J Clin Neurosci 15(3):278–285. doi:10.1016/j.jocn.2007.02.004

    Article  CAS  PubMed  Google Scholar 

  24. Cregg JM, DePaul MA, Filous AR, Lang BT, Tran A, Silver J (2014) Functional regeneration beyond the glial scar. Exp Neurol 253:197–207. doi:10.1016/j.expneurol.2013.12.024

    Article  PubMed  Google Scholar 

  25. Byrnes KR, Stoica BA, Fricke S, Di Giovanni S, Faden AI (2007) Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain: a journal of neurology 130 (Pt 11):2977–2992. doi:10.1093/brain/awm179

    Article  Google Scholar 

  26. Winnefeld M, Grewenig A, Schnolzer M, Spring H, Knoch TA, Gan EC, Rommelaere J, Cziepluch C (2006) Human SGT interacts with Bag-6/Bat-3/Scythe and cells with reduced levels of either protein display persistence of few misaligned chromosomes and mitotic arrest. Exp Cell Res 312(13):2500–2514. doi:10.1016/j.yexcr.2006.04.020

    Article  CAS  PubMed  Google Scholar 

  27. Do-Thi A, Perrin FE, Desclaux M, Saillour P, Amar L, Privat A, Mallet J (2015) Combination of grafted Schwann cells and lentiviral-mediated prevention of glial scar formation improve recovery of spinal cord injured rats. J Chem Neuroanat. doi:10.1016/j.jchemneu.2015.12.014

    PubMed  Google Scholar 

  28. Levine J (2015) The reactions and role of NG2 glia in spinal cord injury. Brain Res. doi:10.1016/j.brainres.2015.07.026

    PubMed  Google Scholar 

  29. Furihata T, Ito R, Kamiichi A, Saito K, Chiba K (2016) Establishment and characterization of a new conditionally immortalized human astrocyte cell line. J Neurochem 136(1):92–105. doi:10.1111/jnc.13358

    Article  CAS  PubMed  Google Scholar 

  30. Li D, Zhang M, Zhang Q, Wang Y, Song X, Zhang Q (2015) Functional recovery after acute intravenous administration of human umbilical cord mesenchymal stem cells in rats with cerebral ischemia-reperfusion injury. Intractable Rare Dis Res 4 (2):98–104. doi:10.5582/irdr.2015.01010

    Article  PubMed  PubMed Central  Google Scholar 

  31. Becker EB, Bonni A (2004) Cell cycle regulation of neuronal apoptosis in development and disease. Prog Neurobiol 72(1):1–25. doi:10.1016/j.pneurobio.2003.12.005

    Article  CAS  PubMed  Google Scholar 

  32. Liu DX, Greene LA (2001) Neuronal apoptosis at the G1/S cell cycle checkpoint. Cell Tissue Res 305(2):217–228

    Article  CAS  PubMed  Google Scholar 

  33. Stankiewicz TR, Linseman DA (2014) Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration. Front Cell Neurosci 8:314. doi:10.3389/fncel.2014.00314

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265. doi:10.1038/nature07935

    Article  CAS  PubMed  Google Scholar 

  35. Haegebarth A, Clevers H (2009) Wnt signaling, lgr5, and stem cells in the intestine and skin. Am J Pathol 174(3):715–721. doi:10.2353/ajpath.2009.080758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Becker L, Huang Q, Mashimo H (2008) Immunostaining of Lgr5, an intestinal stem cell marker, in normal and premalignant human gastrointestinal tissue. Sci World J 8:1168–1176. doi:10.1100/tsw.2008.148

    Article  CAS  Google Scholar 

  37. Tian DS, Yu ZY, Xie MJ, Bu BT, Witte OW, Wang W (2006) Suppression of astroglial scar formation and enhanced axonal regeneration associated with functional recovery in a spinal cord injury rat model by the cell cycle inhibitor olomoucine. J Neurosci Res 84(5):1053–1063. doi:10.1002/jnr.20999

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhang.

Additional information

Xiaoqing Chen and Jie Hao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Hao, J., Fu, T. et al. Temporal and Spatial Expression of LGR5 After Acute Spinal Cord Injury in Adult Rats. Neurochem Res 41, 2645–2654 (2016). https://doi.org/10.1007/s11064-016-1977-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1977-y

Keywords

Navigation