Skip to main content
Log in

Morphological approach to assess the involvement of astrocytes in prion propagation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Transmissible Spongiform Encephalopathies (TSEs) are a group of neurodegenerative disorders affecting animals and humans and for which no effective treatment is available to date. Vacuolation, neuronal/neurite degeneration, deposition of pathological prion protein (PrPsc) and gliosis are changes typically found in brains from TSE affected individuals. However, the actual role of this last feature, microgliosis and astrocytosis, has not been precisely determined. The overall objective of this work is to assess the involvement of glial cells as components of the host protective system in prion propagation; specifically, to analyze the behavior of astroglial cells in prion progression. To achieve this aim, histopathological and immunohistochemical techniques were carried out on samples from cerebella using Scrapie as the prototype of natural TSEs as this made it possible to assess different stages of the disease; specifically, ages and genotypes from Scrapie-affected animals corresponding to different sources, by using optical, confocal and electron microscopy. The results provided in the present study demonstrate the indisputable involvement of astroglia in prion progression by showing specific changes of this glial population matching up to the evolution of the disease. Moreover, cerebellar lesions mainly associated to Purkinje cells that have not previously been reported in animal prion diseases in natural transmission are described here. The close relationship between PrPsc and GFAP hiperimmunoreactivity and Purkinje cells, alongside the evident thickening of their neurites at terminal stages demonstrated in this study, suggest that these neurons are the main target of this neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7(1):41–53

    Article  PubMed  CAS  Google Scholar 

  • Begley DJ, Brightman MW (2003) Structural and functional aspects of the blood–brain barrier. Prog Drug Res 61:40–78

    Google Scholar 

  • Collins SJ, Lewis V, Brazier MW, Hill AF, Lawson VA, Klug GM, Masters CL (2005) Extended period of asymptomatic prion disease after low dose inoculation: assessment of detection methods and implications for infection control. Neurobiol Dis 20(2):336–346

    Article  PubMed  CAS  Google Scholar 

  • DeArmond SJ, Qui Y, Sanchez H, Spilman PR, Ninchak-Casey A, Alonso D, Daggett V (1999) PrPc glycoform heterogeneity as a function of brain region: implications for selective targeting of neurons by prion strains. J Neuropathol Exp Neurol 58(9):1000–1009

    Article  PubMed  CAS  Google Scholar 

  • Dehouck MP, Meresse S, Delorme P, Fruchart JC, Cecchelli R (1990) An easier, reproducible, and mass-production method to study the blood–brain barrier in vitro. J Neurochem 54:1798–1801

    Article  PubMed  CAS  Google Scholar 

  • Furouka H, Horiuchi M, Yamakawa Y, Sata T (2011) Predominant involvement of the cerebellum in guinea pigs infected with Bovine Spongiform Encephalopathy (BSE). J Comp Pathol 144:269–276

    Article  Google Scholar 

  • Graeber MB (2010) Changing Face of Microglia. Science 330(6005):783–788

    Article  PubMed  CAS  Google Scholar 

  • Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119(1):89–105

    Article  PubMed  Google Scholar 

  • Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5(5):347–360

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey M, McGovern G, Sisó S, González L (2011) Cellular and sub-cellular pathology of animal prion diseases: relationship between morphological changes, accumulation of abnormal prion protein and clinical disease. Acta Neuropathol 121(1):113–134

    Article  PubMed  CAS  Google Scholar 

  • Martins VR, Liden R, Prado MA, Walz R, Sakamoto AC, Izquierdo I, Brentani RR (2002) Cellular prion protein: on the road for functions. FEBS Lett 512(1–3):25–28

    Article  PubMed  CAS  Google Scholar 

  • Monleón E, Monzón M, Hortells P, Vargas A, Acín C, Badiola JJ (2004) Detection of PrPsc on lymphoid tissues from naturally affected Scrapie animals: comparison of three visualization systems. J Histochem Cytochem 52:145–151

    Article  PubMed  Google Scholar 

  • Oswald MJ, Palmer DN, Kay GW, Shemilt SJ, Rezaie P, Cooper JD (2005) Glial activation spreads from specific cerebral foci and precedes neurodegeneration in presymptomatic ovine neuronal ceroid lipofuscinosis (CLN6). Neurobiol Dis 20:49–63

    Article  PubMed  CAS  Google Scholar 

  • Press CM, Heggebø R, Espenes A (2004) Involvement of gut-associated lymphoid tissue of ruminants in the spread of transmissible spongiform encephalopathies. Adv Drug Deliv Rev 56(6):885–899

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB, Bolton DC, Groth DF, Bowman KA, Cochran SP, McKinley MP (1982) Further purification and characterization of scrapie prions. Biochemistry 21(26):6942–6950

    Article  PubMed  CAS  Google Scholar 

  • Rapoport M, van Reekum R, Mayberg H (2000) The role of the cerebellum in cognition and behavior: a selective review. J Neuropsychiatry Clin Neurosci 12(2):193–198

    Article  PubMed  CAS  Google Scholar 

  • Rezaie P, Lantos PL (2001) Microglia and the pathogenesis of spongiform encephalopathies. Brain Res Brain Res Rev 35(1):55–72

    Article  PubMed  CAS  Google Scholar 

  • Roucou X, Gains M, Le Blanc AC (2004) Neuroprotective functions of the Prion Protein. J Neurosci Res 75(2):153–161

    Article  PubMed  CAS  Google Scholar 

  • Rubin LL, Staddon JM (1999) The cell biology of the blood-brain barrier. Annu Rev Neurosci 22:11–28

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S, Katamine S, Nishida N, Moriuchi R, Shigematsu K, Sugimoto T, Nakatani A, Kataoka Y, Houtani T, Shirabe S, Okada H, Hasegawa S, Miyamoto T, Noda T (1996) Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 380(6574):528–531

    Article  PubMed  CAS  Google Scholar 

  • Sarasa R, Martínez A, Monleón E, Bolea R, Vargas A, Badiola JJ, Monzón M (2012) The Involvement of Astroglia in the Pathogenesis of Transmissible Spongiform Encephalopathies: A Confocal Microscopy Study. Cell Tissue Res 350(1):127–134

    Article  PubMed  Google Scholar 

  • Sarna JR, Hawkes R (2003) Patterned Purkinje cell death in the cerebellum. Prog Neurobiol 70(6):473–507

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16:367–378

    Article  PubMed  Google Scholar 

  • Wolburg H, Lippoldt A (2002) Tight junctions of the blood–brain barrier Development, composition and regulation. Vascul Pharmacol 38(6):323–337

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Watanabe M (2002) Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells. Anat Sci Int 77:94–108

    Article  PubMed  Google Scholar 

  • Zlokovic BV (2005) Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci 28(4):202–208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a grant from the University of Zaragoza (UZ2010-BIO-10). The authors thank Silvia Ruiz for her excellent technical support and Jay P. Esclapes for his language assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Monzón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, R.S., Sarasa, R., Toledano, A. et al. Morphological approach to assess the involvement of astrocytes in prion propagation. Cell Tissue Res 358, 57–63 (2014). https://doi.org/10.1007/s00441-014-1928-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1928-3

Keywords

Navigation