Skip to main content
Log in

Photic stimulation of the suprachiasmatic nucleus via the non-visual optic system. A gene expression study in the blind Crx −/−mouse

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The visual system of vertebrates consists of an image-forming and a non-image-forming optic system; the image-forming optic system involves the classic photoreceptors, the rods and cones, whereas the non-image-forming optic system involves the melanopsin-containing retinal ganglion cells. Both optic systems make direct neuroanatomical connections to the suprachiasmatic nucleus (SCN) in the hypothalamus in which the biological clock of vertebrates is located. The rhythmic output from SCN neurons is entrained by light via the retina and the retinohypothalamic tract. The response of exposure to light during the subjective night is an immediate expression of several early response genes in the SCN. We show, by quantitative real-time polymerase chain reaction, that the amount of melanopsin mRNA in the retinal ganglion cells is preserved in the blind Crx −/− mouse with degenerated classic photoreceptors. At zeitgeber time 16, the Crx −/− and wild-type mice were exposed to 1 h of light. This resulted in a strong up-regulation of the immediate early genes Nr4a1, Erg, and Rrad in the SCN of both genotypes. Light stimulation during the subjective night resulted in a strong up-regulation of c-fos in both genotypes with a significantly higher up-regulation in the blind Crx −/− mouse. Expression of Grp and Vip, the genes for two classic peptides located in the SCN, was not influenced by light stimulation. The data strongly indicate the involvement of the melanopsin-based non-visual optic system in the regulation of immediate early genes in the SCN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrahamson EE, Moore RY (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916:172–191

    Article  PubMed  CAS  Google Scholar 

  • Aida R, Moriya T, Araki M, Akiyama M, Wada K, Wada E, Shibata S (2002) Gastrin-releasing peptide mediates photic entrainable signals to dorsal subsets of suprachiasmatic nucleus via induction of Period gene in mice. Mol Pharmacol 61:26–34

    Article  PubMed  CAS  Google Scholar 

  • Aioun J, Chambille I, Peytevin J, Martinet L (1998) Neurons containing gastrin-releasing peptide and vasoactive intestinal polypeptide are involved in the reception of the photic signal in the suprachiasmatic nucleus of the Syrian hamster: an immunocytochemical ultrastructural study. Cell Tissue Res 291:239–253

    Article  PubMed  CAS  Google Scholar 

  • Araki R, Nakahara M, Fukumura R, Takahashi H, Mori K, Umeda N, Sujino M, Inouye ST, Abe M (2006) Identification of genes that express in response to light exposure and express rhythmically in a circadian manner in the mouse suprachiasmatic nucleus. Brain Res 1098:9–18

    Article  PubMed  CAS  Google Scholar 

  • Aton SJ, Herzog ED (2005) Come together, right…now: synchronization of rhythms in a mammalian circadian clock. Neuron 48:531–534

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beguin P, Mahalakshmi RN, Nagashima K, Cher DH, Ikeda H, Yamada Y, Seino Y, Hunziker W (2006) Nuclear sequestration of beta-subunits by Rad and Rem is controlled by 14-3-3 and calmodulin and reveals a novel mechanism for Ca2+ channel regulation. J Mol Biol 355:34–46

    Article  PubMed  CAS  Google Scholar 

  • Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Wang QL, Nie Z, Sun H, Lennon G, Copeland NG, Gilbert DJ, Jenkins NA, Zack DJ (1997) Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 19:1017–1030

    Article  PubMed  CAS  Google Scholar 

  • Chou TC, Bjorkum AA, Gaus SE, Lu J, Scammell TE, Saper CB (2002) Afferents to the ventrolateral preoptic nucleus. J Neurosci 22:977–990

    PubMed  CAS  Google Scholar 

  • Daan S, Pittendrigh CS (1976) A functional analysis of circadian pacemakers in nocturnal rodents. II. The variability of phaseresponse curves. J Comp Physiol A 106:253–266

    Article  Google Scholar 

  • Dardente H, Poirel VJ, Klosen P, Pevet P, Masson-Pevet M (2002) Per and neuropeptide expression in the rat suprachiasmatic nuclei: compartmentalization and differential cellular induction by light. Brain Res 958:261–271

    Article  PubMed  CAS  Google Scholar 

  • Dardente H, Menet JS, Challet E, Tournier BB, Pevet P, Masson-Pevet M (2004) Daily and circadian expression of neuropeptides in the suprachiasmatic nuclei of nocturnal and diurnal rodents. Brain Res Mol Brain Res 124:143–151

    Article  PubMed  CAS  Google Scholar 

  • Doyle S, Menaker M (2007) Circadian photoreception in vertebrates. Cold Spring Harb Symp Quant Biol 72:499–508

    Article  PubMed  CAS  Google Scholar 

  • Foster RG (1998) Shedding light on the biological clock. Neuron 20:829–832

    Article  PubMed  CAS  Google Scholar 

  • Foster RG, Argamaso S, Coleman S, Colwell CS, Lederman A, Provencio I (1993) Photoreceptors regulating circadian behavior: a mouse model. J Biol Rhythms 8 (Suppl):S17–S23

    PubMed  Google Scholar 

  • Francl JM, Kaur G, Glass JD (2010) Roles of light and serotonin in the regulation of gastrin-releasing peptide and arginine vasopressin output in the hamster SCN circadian clock. Eur J Neurosci 32:1170–1179

    Article  PubMed  PubMed Central  Google Scholar 

  • Freedman MS, Lucas RJ, Soni B, Von SM, Munoz M, David-Gray Z, Foster R (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–504

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Liao HW, Do MT, Yau KW (2005) Non-image-forming ocular photoreception in vertebrates. Curr Opin Neurobiol 15:415–422

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Furukawa T, Morrow EM, Cepko CL (1997) Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91:531–541

    Article  PubMed  CAS  Google Scholar 

  • Furukawa T, Morrow EM, Li T, Davis FC, Cepko CL (1999) Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat Genet 23:466–470

    Article  PubMed  CAS  Google Scholar 

  • Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90:1063–1102

    Article  PubMed  CAS  Google Scholar 

  • Hannibal J, Moller M, Ottersen OP, Fahrenkrug J (2000) PACAP and glutamate are co-stored in the retinohypothalamic tract. J Comp Neurol 418:147–155

    Article  PubMed  CAS  Google Scholar 

  • Hannibal J, Hindersson P, Ostergaard J, Georg B, Heegaard S, Larsen PJ, Fahrenkrug J (2004) Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retinohypothalamic tract. Invest Ophthalmol Vis Sci 45:4202–4209

    Article  PubMed  Google Scholar 

  • Hannibal J, Georg B, Hindersson P, Fahrenkrug J (2005) Light and darkness regulate melanopsin in the retinal ganglion cells of the albino Wistar rat. J Mol Neurosci 27:147–155

    Article  PubMed  CAS  Google Scholar 

  • Hannibal J, Hsiung HM, Fahrenkrug J (2011) Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice. Am J Physiol Regul Integr Comp Physiol 300:R519–R530

    Article  PubMed  CAS  Google Scholar 

  • Hannibal J, Georg B, Fahrenkrug J (2013) Differential expression of melanopsin mRNA and protein in brown Norwegian rats. Exp Eye Res 106:55–63

    Article  PubMed  CAS  Google Scholar 

  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG, Yau KW (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424:76–81

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Honrado GI, Johnson RS, Golombek DA, Spiegelman BM, Papaioannou VE, Ralph MR (1996) The circadian system of c-fos deficient mice. J Comp Physiol A 178:563–570

    Article  PubMed  CAS  Google Scholar 

  • Kalsbeek A, Teclemariam-Mesbah R, Pevet P (1993) Efferent projections of the suprachiasmatic nucleus in the golden hamster (Mesocricetus auratus). J Comp Neurol 332:293–314

    Article  PubMed  CAS  Google Scholar 

  • Karatsoreos IN, Yan L, LeSauter J, Silver R (2004) Phenotype matters: identification of light-responsive cells in the mouse suprachiasmatic nucleus. J Neurosci 24:68–75

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kilduff TS, Vugrinic C, Lee SL, Milbrandt JD, Mikkelsen JD, O’Hara BF, Heller HC (1998) Characterization of the circadian system of NGFI-A and NGFI-A/NGFI-B deficient mice. J Biol Rhythms 13:347–357

    Article  PubMed  CAS  Google Scholar 

  • Klein DC, Smoot R, Weller JL, Higa S, Markey SP, Creed GJ, Jacobowitz DM (1983) Lesions of the paraventricular nucleus area of the hypothalamus disrupt the suprachiasmatic leads to spinal cord circuit in the melatonin rhythm generating system. Brain Res Bull 10:647–652

    Article  PubMed  CAS  Google Scholar 

  • Korf HW, Von GC, Stehle J (2003) The circadian system and melatonin: lessons from rats and mice. Chronobiol Int 20:697–710

    Article  PubMed  CAS  Google Scholar 

  • Lin JT, Kornhauser JM, Singh NP, Mayo KE, Takahashi JS (1997) Visual sensitivities of nur77 (NGFI-B) and zif268 (NGFI-A) induction in the suprachiasmatic nucleus are dissociated from c-fos induction and behavioral phase-shifting responses. Brain Res Mol Brain Res 46:303–310

    Article  PubMed  Google Scholar 

  • Loh DH, Dragich JM, Kudo T, Schroeder AM, Nakamura TJ, Waschek JA, Block GD, Colwell CS (2011) Effects of vasoactive intestinal peptide genotype on circadian gene expression in the suprachiasmatic nucleus and peripheral organs. J Biol Rhythms 26:200–209

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Møller M, Baeres FM (2002) The anatomy and innervation of the mammalian pineal gland. Cell Tissue Res 309:139–150

    Article  PubMed  Google Scholar 

  • Møller M, Phansuwan-Pujito P, Morgan KC, Badiu C (1997) Localization and diurnal expression of mRNA encoding the beta1-adrenoceptor in the rat pineal gland: an in situ hybridization study. Cell Tissue Res 288:279–284

    Article  PubMed  Google Scholar 

  • Moyers JS, Bilan PJ, Zhu J, Kahn CR (1997) Rad and Rad-related GTPases interact with calmodulin and calmodulin-dependent protein kinase II. J Biol Chem 272:11832–11839

    Article  PubMed  CAS  Google Scholar 

  • Munch IC, Moller M, Larsen PJ, Vrang N (2002) Light-induced c-Fos expression in suprachiasmatic nuclei neurons targeting the paraventricular nucleus of the hamster hypothalamus: phase dependence and immunochemical identification. J Comp Neurol 442:48–62

    Article  PubMed  CAS  Google Scholar 

  • Nomura K, Takeuchi Y, Fukunaga K (2006) MAP kinase additively activates the mouse Per1 gene promoter with CaM kinase II. Brain Res 1118:25–33

    Article  PubMed  CAS  Google Scholar 

  • Okamura H (2004) Clock genes in cell clocks: roles, actions, and mysteries. J Biol Rhythms 19:388–399

    Article  PubMed  CAS  Google Scholar 

  • Porterfield VM, Piontkivska H, Mintz EM (2007) Identification of novel light-induced genes in the suprachiasmatic nucleus. BMC Neurosci 8:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosci 20:600–605

    PubMed  CAS  Google Scholar 

  • Rath MF, Morin F, Shi Q, Klein DC, Møller M (2007) Ontogenetic expression of the Otx2 and Crx homeobox genes in the retina of the rat. Exp Eye Res 85:65–73

    Article  PubMed  CAS  Google Scholar 

  • Rath MF, Rohde K, Fahrenkrug J, Møller M (2013) Circadian clock components in the rat neocortex: daily dynamics, localization and regulation. Brain Struct Funct 218:551–562

    Article  PubMed  CAS  Google Scholar 

  • Rea MA (1992) Different populations of cells in the suprachiasmatic nuclei express c-fos in association with light-induced phase delays and advances of the free-running activity rhythm in hamsters. Brain Res 579:107–112

    Article  PubMed  CAS  Google Scholar 

  • Reghunandanan V, Reghunandanan R (2006) Neurotransmitters of the suprachiasmatic nuclei. J Circadian Rhythms 4:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Rovsing L, Rath MF, Lund-Andersen C, Klein DC, Møller M (2010) A neuroanatomical and physiological study of the non-image forming visual system of the cone-rod homeobox gene (Crx) knock out mouse. Brain Res 1343:54–65

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rovsing L, Clokie S, Bustos DM, Rohde K, Coon SL, Litman T, Rath MF, Møller M, Klein DC (2011) Crx broadly modulates the pineal transcriptome. J Neurochem 119:262-274

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruggiero L, Allen CN, Brown RL, Robinson DW (2010) Mice with early retinal degeneration show differences in neuropeptide expression in the suprachiasmatic nucleus. Behav Brain Funct 6:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Rusak B, Robertson HA, Wisden W, Hunt SP (1990) Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science 248:1237–1240

    Article  PubMed  CAS  Google Scholar 

  • Saper CB, Lu J, Chou TC, Gooley J (2005) The hypothalamic integrator for circadian rhythms. Trends Neurosci 28:152–157

    Article  PubMed  CAS  Google Scholar 

  • Semo M, Peirson S, Lupi D, Lucas RJ, Jeffery G, Foster RG (2003) Melanopsin retinal ganglion cells and the maintenance of circadian and pupillary responses to light in aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci 17:1793–1801

    Article  PubMed  Google Scholar 

  • Shinohara K, Tominaga K, Isobe Y, Inouye ST (1993) Photic regulation of peptides located in the ventrolateral subdivision of the suprachiasmatic nucleus of the rat: daily variations of vasoactive intestinal polypeptide, gastrin-releasing peptide, and neuropeptide Y. J Neurosci 13:793–800

    PubMed  CAS  Google Scholar 

  • Tanaka M, Hayashi S, Tamada Y, Ikeda T, Hisa Y, Takamatsu T, Ibata Y (1997) Direct retinal projections to GRP neurons in the suprachiasmatic nucleus of the rat. Neuroreport 8:2187–2191

    Article  PubMed  CAS  Google Scholar 

  • Vrang N, Larsen PJ, Mikkelsen JD (1995) Direct projection from the suprachiasmatic nucleus to hypophysiotrophic corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus of the hypothalamus demonstrated by means of Phaseolus vulgaris-leucoagglutinin tract tracing. Brain Res 684:61–69

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Vanecek J, Yamaoka S (2000) In vitro entrainment of the circadian rhythm of vasopressin-releasing cells in suprachiasmatic nucleus by vasoactive intestinal polypeptide. Brain Res 877:361–366

    Article  PubMed  CAS  Google Scholar 

  • Weng S, Estevez ME, Berson DM (2013) Mouse ganglion-cell photoreceptors are driven by the most sensitive rod pathway and by both types of cones. PLoS One 8:e66480

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise Rovsing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rovsing, L., Møller, M. Photic stimulation of the suprachiasmatic nucleus via the non-visual optic system. A gene expression study in the blind Crx −/−mouse. Cell Tissue Res 358, 239–248 (2014). https://doi.org/10.1007/s00441-014-1910-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1910-0

Keywords

Navigation