Skip to main content

Advertisement

Log in

Actin filament dynamics and endothelial cell junctions: the Ying and Yang between stabilization and motion

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The vascular endothelium is a cellular interface between the blood and the interstitial space of tissue, which controls the exchange of fluid, solutes and cells by both transcellular and paracellular means. To accomplish the demands on barrier function, the regulation of the endothelium requires quick and adaptive mechanisms. This is, among others, accomplished by actin dynamics that interdependently interact with both the VE-cadherin/catenin complex, the main components of the adherens type junctions in endothelium and the membrane cytoskeleton. Actin filaments in endothelium are components of super-structured protein assemblies that control a variety of dynamic processes such as endo- and exocytosis, shape change, cell–substrate along with cell–cell adhesion and cell motion. In endothelium, actin filaments are components of: (1) contractile actin bundles appearing as stress fibers and junction-associated circumferential actin filaments, (2) actin networks accompanied by endocytotic ruffles, lamellipodia at leading edges of migrating cells and junction-associated intermittent lamellipodia (JAIL) that dynamically maintain junction integrity, (3) cortical actin and (4) the membrane cytoskeleton. All these structures, most probably interact with cell junctions and cell–substrate adhesion sites. Due to the rapid growth in information, we aim to provide a bird’s eye view focusing on actin filaments in endothelium and its functional relevance for entire cell and junction integrity, rather than discussing the detailed molecular mechanism for control of actin dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe K, Takeichi M (2008) EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt. Proc Natl Acad Sci USA 105:13–19

    PubMed Central  PubMed  CAS  Google Scholar 

  • Aepfelbacher M, Essler M, Huber E, Sugai M, Weber PC (1997) Bacterial toxins block endothelial wound repair. Evidence that Rho GTPases control cytoskeletal rearrangements in migrating endothelial cells. Arterioscler Thromb Vasc Biol 17:1623–1629

    PubMed  CAS  Google Scholar 

  • Aktories K, Lang AE, Schwan C, Mannherz HG (2011) Actin as target for modification by bacterial protein toxins. FEBS J 278:4526–4543

    PubMed  CAS  Google Scholar 

  • Alcaide P, Newton G, Auerbach S, Sehrawat S, Mayadas TN, Golan DE, Yacono P, Vincent P, Kowalczyk A, Luscinskas FW (2008) p120-Catenin regulates leukocyte transmigration through an effect on VE-cadherin phosphorylation. Blood 112:2770–2779

    PubMed Central  PubMed  CAS  Google Scholar 

  • Alcaide P, Martinelli R, Newton G, Williams MR, Adam A, Vincent PA, Luscinskas FW (2012) p120-Catenin prevents neutrophil transmigration independently of RhoA inhibition by impairing Src dependent VE-cadherin phosphorylation. Am J Physiol Cell Physiol 303:C385–C395

    PubMed Central  PubMed  CAS  Google Scholar 

  • Aranda JF, Reglero-Real N, Kremer L, Marcos-Ramiro B, Ruiz-Saenz A, Calvo M, Enrich C, Correas I, Millan J, Alonso MA (2011) MYADM regulates Rac1 targeting to ordered membranes required for cell spreading and migration. Mol Biol Cell 22:1252–1262

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ayalon O, Geiger B (1997) Cyclic changes in the organization of cell adhesions and the associated cytoskeleton, induced by stimulation of tyrosine phosphorylation in bovine aortic endothelial cells. J Cell Sci 110(Pt 5):547–556

    PubMed  CAS  Google Scholar 

  • Beckers CM, van Hinsbergh VW, van Nieuw Amerongen GP (2010) Driving Rho GTPase activity in endothelial cells regulates barrier integrity. Thromb Haemost 103:40–55

    PubMed  CAS  Google Scholar 

  • Bennett V (1982) The molecular basis for membrane - cytoskeleton association in human erythrocytes. J Cell Biochem 18:49–65

    PubMed  CAS  Google Scholar 

  • Benz PM, Blume C, Moebius J, Oschatz C, Schuh K, Sickmann A, Walter U, Feller SM, Renne T (2008) Cytoskeleton assembly at endothelial cell-cell contacts is regulated by alphaII-spectrin-VASP complexes. J Cell Biol 180:205–219

    PubMed Central  PubMed  CAS  Google Scholar 

  • Birukova AA, Tian X, Tian Y, Higginbotham K, Birukov KG (2013) Rap-afadin axis in control of Rho signaling and endothelial barrier recovery. Mol Biol Cell 24:2678–2688

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bogatcheva NV, Garcia JG, Verin AD (2002) Molecular mechanisms of thrombin-induced endothelial cell permeability. Biochemistry (Mosc) 67:75–84

    CAS  Google Scholar 

  • Bourdoulous S, Orend G, MacKenna DA, Pasqualini R, Ruoslahti E (1998) Fibronectin matrix regulates activation of RHO and CDC42 GTPases and cell cycle progression. J Cell Biol 143:267–276

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bunnell TM, Burbach BJ, Shimizu Y, Ervasti JM (2011) beta-Actin specifically controls cell growth, migration, and the G-actin pool. Mol Biol Cell 22:4047–4058

    PubMed Central  PubMed  CAS  Google Scholar 

  • Caveda L, Martin-Padura I, Navarro P, Breviario F, Corada M, Gulino D, Lampugnani MG, Dejana E (1996) Inhibition of cultured cell growth by vascular endothelial cadherin (cadherin-5/VE-cadherin). J Clin Invest 98:886–893

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chiasson CM, Wittich KB, Vincent PA, Faundez V, Kowalczyk AP (2009) p120-catenin inhibits VE-cadherin internalization through a Rho-independent mechanism. Mol Biol Cell 20:1970–1980

    PubMed Central  PubMed  CAS  Google Scholar 

  • Choi YS, Choi HJ, Min JK, Pyun BJ, Maeng YS, Park H, Kim J, Kim YM, Kwon YG (2009) Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6-mediated endothelial nitric oxide production. Blood 114:3117–3126

    PubMed  CAS  Google Scholar 

  • Dejana E, Vestweber D (2013) The Role VE-Cadherin in Vascular Morphogenesis and Permeability Control. In: VanRoy F (ed) Molecular Biology of Cadherins, vol 116. Progress in Molecular Biology and Translational Science, pp 119-144

  • DePaola N, Phelps JE, Florez L, Keese CR, Minnear FL, Giaever I, Vincent P (2001) Electrical impedance of cultured endothelium under fluid flow. Ann Biomed Eng 29:648–656

    PubMed  CAS  Google Scholar 

  • Dickinson RB (2009) Models for actin polymerization motors. J Math Biol 58:81–103

    PubMed  Google Scholar 

  • Disanza A, Steffen A, Hertzog M, Frittoli E, Rottner K, Scita G (2005) Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement. Cell Mol Life Sci 62:955–970

    PubMed  CAS  Google Scholar 

  • Dominguez R (2010) Structural insights into de novo actin polymerization. Curr Opin Struct Biol 20:217–225

    PubMed Central  PubMed  CAS  Google Scholar 

  • Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI (2005) Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 123:903–915

    PubMed Central  PubMed  CAS  Google Scholar 

  • Drenckhahn D (1982) Cell motility and cytoüplasmic filaments in vascular endothelium. In: Hammersen MK (ed) Bodensee Symposium on microcirculation. Karger, Basel, pp 60–79

    Google Scholar 

  • Drenckhahn D, Wagner J (1986) Stress fibers in the splenic sinus endothelium in situ: molecular structure, relationship to the extracellular matrix, and contractility. J Cell Biol 102:1738–1747

    PubMed  CAS  Google Scholar 

  • Essler M, Amano M, Kruse HJ, Kaibuchi K, Weber PC, Aepfelbacher M (1998) Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells. J Biol Chem 273:21867–21874

    PubMed  CAS  Google Scholar 

  • Fels J, Jeggle P, Kusche-Vihrog K, Oberleithner H (2012) Cortical actin nanodynamics determines nitric oxide release in vascular endothelium. PLoS ONE 7:e41520

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fraccaroli A, Franco CA, Rognoni E, Neto F, Rehberg M, Aszodi A, Wedlich-Soldner R, Pohl U, Gerhardt H, Montanez E (2012) Visualization of endothelial actin cytoskeleton in the mouse retina. PLoS ONE 7:e47488

    PubMed Central  PubMed  CAS  Google Scholar 

  • Franke RP, Grafe M, Schnittler H, Seiffge D, Mittermayer C, Drenckhahn D (1984) Induction of human vascular endothelial stress fibres by fluid shear stress. Nature 307:648–649

    PubMed  CAS  Google Scholar 

  • Gabbiani G, Badonnel MC, Rona G (1975) Cytoplasmic contractile apparatus in aortic endothelial cells of hypertensive rats. Lab Invest 32:227–234

    PubMed  CAS  Google Scholar 

  • Gabbiani G, Elemer G, Guelpa C, Vallotton MB, Badonnel MC, Huttner I (1979) Morphologic and functional changes of the aortic intima during experimental hypertension. Am J Pathol 96:399–422

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gabbiani G, Gabbiani F, Lombardi D, Schwartz SM (1983) Organization of actin cytoskeleton in normal and regenerating arterial endothelial cells. Proc Natl Acad Sci USA 80:2361–2364

    PubMed Central  PubMed  CAS  Google Scholar 

  • Geyer H, Geyer R, Odenthal-Schnittler M, Schnittler HJ (1999) Characterization of human vascular endothelial cadherin glycans [In Process Citation]. Glycobiology 9:915–925

    PubMed  CAS  Google Scholar 

  • Goley ED, Welch MD (2006) The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7:713–726

    PubMed  CAS  Google Scholar 

  • Gordon SR, Staley CA (1990) Role of the cytoskeleton during injury-induced cell migration in corneal endothelium. Cell Motil Cytoskeleton 16:47–57

    PubMed  CAS  Google Scholar 

  • Gotlieb AI (1990) The endothelial cytoskeleton: organization in normal and regenerating endothelium. Toxicol Pathol 18:603–617

    PubMed  CAS  Google Scholar 

  • Hatanaka K, Simons M, Murakami M (2011) Phosphorylation of VE-cadherin controls endothelial phenotypes via p120-catenin coupling and Rac1 activation. Am J Physiol Heart Circ Physiol 300:H162–H172

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hoelzle MK, Svitkina T (2012) The cytoskeletal mechanisms of cell-cell junction formation in endothelial cells. Mol Biol Cell 23:310–323

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hotulainen P, Lappalainen P (2006) Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J Cell Biol 173:383–394

    PubMed Central  PubMed  CAS  Google Scholar 

  • Huttner I, Walker C, Gabbiani G (1985) Aortic endothelial cell during regeneration. Remodeling of cell junctions, stress fibers, and stress fiber-membrane attachment domains. Lab Invest 53:287–302

    PubMed  CAS  Google Scholar 

  • Huveneers S, Oldenburg J, Spanjaard E, van der Krogt G, Grigoriev I, Akhmanova A, Rehmann H, de Rooij J (2012) Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling. J Cell Biol 196:641–652

    PubMed Central  PubMed  CAS  Google Scholar 

  • Iino R, Koyama I, Kusumi A (2001) Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys J 80:2667–2677

    PubMed Central  PubMed  CAS  Google Scholar 

  • Itoh M, Nagafuchi A, Moroi S, Tsukita S (1997) Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments. J Cell Biol 138:181–192

    PubMed Central  PubMed  CAS  Google Scholar 

  • Iyer S, Ferreri DM, DeCocco NC, Minnear FL, Vincent PA (2004) VE-cadherin-p120 interaction is required for maintenance of endothelial barrier function. Am J Physiol Lung Cell Mol Physiol 286:L1143–L1153

    PubMed  CAS  Google Scholar 

  • Jinguji Y (2003) Developmental stage dependent expression of the endothelial stress fibers and organization of fibronectin fibrils in the aorta of chick embryos. Zool Sci 20:1359–1366

    PubMed  Google Scholar 

  • Kano Y, Katoh K, Fujiwara K (2000) Lateral zone of cell-cell adhesion as the major fluid shear stress- related signal transduction site. Circ Res 86:425–433

    PubMed  CAS  Google Scholar 

  • Kapus A, Janmey P (2013) Plasma membrane–cortical cytoskeleton interactions: a cell biology approach with biophysical considerations. Compr Physiol 3:1231–1281

    PubMed  Google Scholar 

  • Katoh K, Noda Y (2012) Distribution of cytoskeletal components in endothelial cells in the Guinea pig renal artery. Int J Biol 2012:439349

    Google Scholar 

  • Katoh K, Kano Y, Ookawara S (2008) Role of stress fibers and focal adhesions as a mediator for mechano-signal transduction in endothelial cells in situ. Vasc Health Risk Manag 4:1273–1282

    PubMed Central  PubMed  Google Scholar 

  • Knudsen KA, Soler AP, Johnson KR, Wheelock MJ (1995) Interaction of alpha-actinin with the cadherin//catenin cell-cell adhesion complex via alpha-catenin. J Cell Biol 130:67–77

    PubMed  CAS  Google Scholar 

  • Kobielak A, Pasolli HA, Fuchs E (2004) Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat Cell Biol 6:21–30

    PubMed Central  PubMed  CAS  Google Scholar 

  • Komarova Y, Malik AB (2010) Regulation of endothelial permeability via paracellular and transcellular transport pathways. Ann Rev Physiol 72:463–493

    CAS  Google Scholar 

  • Konstantoulaki M, Kouklis P, Malik AB (2003) Protein kinase C modifications of VE-cadherin, p120, and beta-catenin contribute to endothelial barrier dysregulation induced by thrombin. Am J Physiol Lung Cell Mol Physiol 285:L434–L442

    PubMed  CAS  Google Scholar 

  • Kovacs EM, Goodwin M, Ali RG, Paterson AD, Yap AS (2002) Cadherin-directed actin assembly: E-cadherin physically associates with the Arp2/3 complex to direct actin assembly in nascent adhesive contacts. Curr Biol 12:379–382

    PubMed  CAS  Google Scholar 

  • Kronstein R, Seebach J, Grossklaus S, Minten C, Engelhardt B, Drab M, Liebner S, Arsenijevic Y, Taha AA, Afanasieva T, Schnittler HJ (2012) Caveolin-1 opens endothelial cell junctions by targeting catenins. Cardiovasc Res 93:130–140

    PubMed  CAS  Google Scholar 

  • Kuldo JM, Asgeirsdottir SA, Zwiers PJ, Bellu AR, Rots MG, Schalk JA, Ogawara KI, Trautwein C, Banas B, Haisma HJ, Molema G, Kamps JA (2013) Targeted adenovirus mediated inhibition of NF-kappaB-dependent inflammatory gene expression in endothelial cells in vitro and in vivo. J Control Release 166:57–65

    PubMed  CAS  Google Scholar 

  • Lampugnani MG, Resnati M, Raiteri M, Pigott R, Pisacane A, Houen G, Ruco LP, Dejana E (1992) A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J Cell Biol 118:1511–1522

    PubMed  CAS  Google Scholar 

  • Lampugnani MG, Corada M, Caveda L, Breviario F, Ayalon O, Geiger B, Dejana E (1995) The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha- catenin with vascular endothelial cadherin (VE-cadherin). J Cell Biol 129:203–217

    PubMed  CAS  Google Scholar 

  • Lecuit T (2008) “Developmental mechanics”: cellular patterns controlled by adhesion, cortical tension and cell division. HFSP J 2:72–78

    PubMed Central  PubMed  Google Scholar 

  • Lemichez E, Aktories K (2013) Hijacking of Rho GTPases during bacterial infection. Exp Cell Res 319:2329–2336

    PubMed  CAS  Google Scholar 

  • Liebner S, Cavallaro U, Dejana E (2006) The multiple languages of endothelial cell-to-cell communication. Arterioscler Thromb Vasc Biol 26:1431–1438

    PubMed  CAS  Google Scholar 

  • Lindemann D, Schnittler H (2009) Genetic manipulation of endothelial cells by viral vectors. Thromb Haemost 102:1135–1143

    PubMed  CAS  Google Scholar 

  • Magnusson MK, Mosher DF (1998) Fibronectin: structure, assembly, and cardiovascular implications. Arterioscler Thromb Vasc Biol 18:1363–1370

    PubMed  CAS  Google Scholar 

  • Mannell H, Pircher J, Rathel T, Schilberg K, Zimmermann K, Pfeifer A, Mykhaylyk O, Gleich B, Pohl U, Krotz F (2012) Targeted endothelial gene delivery by ultrasonic destruction of magnetic microbubbles carrying lentiviral vectors. Pharm Res 29:1282–1294

    PubMed  CAS  Google Scholar 

  • Marie H, Pratt SJ, Betson M, Epple H, Kittler JT, Meek L, Moss SJ, Troyanovsky S, Attwell D, Longmore GD, Braga VM (2003) The LIM protein Ajuba is recruited to cadherin-dependent cell junctions through an association with alpha-catenin. J Biol Chem 278:1220–1228

    PubMed  CAS  Google Scholar 

  • Martinelli R, Kamei M, Sage PT, Massol R, Varghese L, Sciuto T, Toporsian M, Dvorak AM, Kirchhausen T, Springer TA, Carman CV (2013) Release of cellular tension signals self-restorative ventral lamellipodia to heal barrier micro-wounds. J Cell Biol 201:449–465

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446–454

    PubMed  CAS  Google Scholar 

  • Millan J, Cain RJ, Reglero-Real N, Bigarella C, Marcos-Ramiro B, Fernandez-Martin L, Correas I, Ridley AJ (2010) Adherens junctions connect stress fibres between adjacent endothelial cells. BMC Biol 8:11

    PubMed Central  PubMed  Google Scholar 

  • Mirzapoiazova T, Kolosova I, Usatyuk PV, Natarajan V, Verin AD (2006) Diverse effects of vascular endothelial growth factor on human pulmonary endothelial barrier and migration. Am J Physiol Lung Cell Mol Physiol 291:L718–L724

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Patrushev N, Inomata H, Mehta D, Urao N, Kim HW, Razvi M, Kini V, Mahadev K, Goldstein BJ, McKinney R, Fukai T, Ushio-Fukai M (2008) Role of protein tyrosine phosphatase 1B in vascular endothelial growth factor signaling and cell-cell adhesions in endothelial cells. Circ Res 102:1182–1191

    PubMed Central  PubMed  CAS  Google Scholar 

  • Napione L, Cascone I, Mitola S, Serini G, Bussolino F (2007) Integrins: a flexible platform for endothelial vascular tyrosine kinase receptors. Autoimmun Rev 7:18–22

    PubMed  CAS  Google Scholar 

  • Nelson CM, Chen CS (2003) VE-cadherin simultaneously stimulates and inhibits cell proliferation by altering cytoskeletal structure and tension. J Cell Sci 116:3571–3581

    PubMed  CAS  Google Scholar 

  • Nelson WJ, Dickinson DJ, Weis WI (2013) Roles of cadherins and catenins in cell-cell adhesion and epithelial cell polarity. Prog Mol Biol Transl Sci 116:3–23

    PubMed  CAS  Google Scholar 

  • Niessen CM, Leckband D, Yap AS (2011) Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 91:691–731

    PubMed Central  PubMed  CAS  Google Scholar 

  • Orr AW, Sanders JM, Bevard M, Coleman E, Sarembock IJ, Schwartz MA (2005) The subendothelial extracellular matrix modulates NF-kappaB activation by flow: a potential role in atherosclerosis. J Cell Biol 169:191–202

    PubMed Central  PubMed  CAS  Google Scholar 

  • Padrick SB, Rosen MK (2010) Physical mechanisms of signal integration by WASP family proteins. Annu Rev Biochem 79:707–735

    PubMed Central  PubMed  CAS  Google Scholar 

  • Patterson CE, Lum H (2001) Update on pulmonary edema: the role and regulation of endothelial barrier function. Endothelium 8:75–105

    PubMed  CAS  Google Scholar 

  • Pesen D, Hoh JH (2005) Micromechanical architecture of the endothelial cell cortex. Biophys J 88:670–679

    PubMed Central  PubMed  CAS  Google Scholar 

  • Petrache I, Verin AD, Crow MT, Birukova A, Liu F, Garcia JG (2001) Differential effect of MLC kinase in TNF-alpha-induced endothelial cell apoptosis and barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 280:L1168–L1178

    PubMed  CAS  Google Scholar 

  • Pokutta S, Weis WI (2007) Structure and mechanism of cadherins and catenins in cell-cell contacts. Annu Rev Cell Dev Biol 23:237–261

    PubMed  CAS  Google Scholar 

  • Pokutta S, Drees F, Takai Y, Nelson WJ, Weis WI (2002) Biochemical and structural definition of the l-afadin- and actin-binding sites of alpha-catenin. J Biol Chem 277:18868–18874

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    PubMed  CAS  Google Scholar 

  • Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29:545–576

    PubMed  CAS  Google Scholar 

  • Potter MD, Barbero S, Cheresh DA (2005) Tyrosine phosphorylation of VE-cadherin prevents binding of p120- and beta-catenin and maintains the cellular mesenchymal state. J Biol Chem 280:31906–31912

    PubMed  CAS  Google Scholar 

  • Prasain N, Stevens T (2009) The actin cytoskeleton in endothelial cell phenotypes. Microvasc Res 77:53–63

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rajput C, Kini V, Smith M, Yazbeck P, Chavez A, Schmidt T, Zhang W, Knezevic N, Komarova Y, Mehta D (2013) Neural Wiskott-Aldrich syndrome protein (N-WASP)-mediated p120-catenin interaction with Arp2-Actin complex stabilizes endothelial adherens junctions. J Biol Chem 288:4241–4250

    PubMed Central  PubMed  CAS  Google Scholar 

  • Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, Sixt M, Wedlich-Soldner R (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5:605–607

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rigor RR, Shen Q, Pivetti CD, Wu MH, Yuan SY (2013) Myosin light chain kinase signaling in endothelial barrier dysfunction. Med Res Rev 33:911–933

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rimm DL, Koslov ER, Kebriaei P, Cianci CD, Morrow JS (1995) Alpha 1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc Natl Acad Sci USA 92:8813–8817

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rottner K, Hänisch J, Campellone KG (2010) WASH, WHAMM and JMY: regulation of Arp2/3 complex and beyond. Trends Cell Biol 20:650–661

    PubMed  CAS  Google Scholar 

  • Rousseau S, Houle F, Huot J (2000) Integrating the VEGF signals leading to actin-based motility in vascular endothelial cells. Trends Cardiovasc Med 10:321–327

    PubMed  CAS  Google Scholar 

  • Rubenstein PA (1990) The functional importance of multiple actin isoforms. BioEssays 12:309–315

    PubMed  CAS  Google Scholar 

  • Schnittler HJ, Wilke A, Gress T, Suttorp N, Drenckhahn D (1990) Role of actin and myosin in the control of paracellular permeability in pig, rat and human vascular endothelium. J Physiol 431:379–401

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schnittler HJ, Puschel B, Drenckhahn D (1997) Role of cadherins and plakoglobin in interendothelial adhesion under resting conditions and shear stress. Am J Physiol 273:H2396–H2405

    PubMed  CAS  Google Scholar 

  • Seebach J, Dieterich P, Luo F, Schillers H, Vestweber D, Oberleithner H, Galla HJ, Schnittler HJ (2000) Endothelial barrier function under laminar fluid shear stress. Lab Invest 80:1819–1831

    PubMed  CAS  Google Scholar 

  • Seebach J, Madler HJ, Wojciak-Stothard B, Schnittler HJ (2005) Tyrosine phosphorylation and the small GTPase rac cross-talk in regulation of endothelial barrier function. Thromb Haemost 94:620–629

    PubMed  CAS  Google Scholar 

  • Seebach J, Donnert G, Kronstein R, Werth S, Wojciak-Stothard B, Falzarano D, Mrowietz C, Hell SW, Schnittler HJ (2007) Regulation of endothelial barrier function during flow-induced conversion to an arterial phenotype. Cardiovasc Res 75:596–607

    PubMed  CAS  Google Scholar 

  • Shen Q, Rigor RR, Pivetti CD, Wu MH, Yuan SY (2010) Myosin light chain kinase in microvascular endothelial barrier function. Cardiovasc Res 87:272–280

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shirinsky VP, Antonov AS, Birukov KG, Sobolevsky AV, Romanov YA, Kabaeva NV, Antonova GN, Smirnov VN (1989) Mechano-chemical control of human endothelium orientation and size. J Cell Biol 109:331–339

    PubMed  CAS  Google Scholar 

  • Shyy JY, Chien S (2002) Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91:769–775

    PubMed  CAS  Google Scholar 

  • Smeets EF, von Asmuth EJ, van der Linden CJ, Leeuwenberg JF, Buurman WA (1992) A comparison of substrates for human umbilical vein endothelial cell culture. Biotech Histochem 67:241–250

    PubMed  CAS  Google Scholar 

  • Stupack DG, Cheresh DA (2002) ECM remodeling regulates angiogenesis: endothelial integrins look for new ligands. Science’s STKE 2002:pe7

  • Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, Potente M, Daly C, Dimmeler S, Dejana E (2008) Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol 10:923–934

    PubMed  CAS  Google Scholar 

  • Taflin C, Favier B, Charron D, Glotz D, Mooney N (2013) Study of the allogeneic response induced by endothelial cells expressing HLA class II after lentiviral transduction. Methods Mol Biol 960:461–472

    PubMed  CAS  Google Scholar 

  • Taha AA, Schnittler H (2014) Dynamics between actin and the VE-cadherin/catenin complex-novel aspects of the ARP2/3 complex in regulation of endothelial junctions. Cell Adhesion Migration (in press)

  • Taha AA, Taha M, Seebach J, Schnittler HJ (2014) ARP2/3-mediated junction-associated lamellipodia control VE-cadherin-based cell junction dynamics and maintain monolayer integrity. Mol Biol Cell 25:245–256

    PubMed Central  PubMed  Google Scholar 

  • Tang VW, Brieher WM (2012) alpha-Actinin-4/FSGS1 is required for Arp2/3-dependent actin assembly at the adherens junction. J Cell Biol 196:115–130

    PubMed Central  PubMed  CAS  Google Scholar 

  • Thurston G, Baldwin AL (1994) Endothelial actin cytoskeleton in rat mesentery microvasculature. Am J Physiol 266:H1896–H1909

    PubMed  CAS  Google Scholar 

  • Thurston G, Turner D (1994) Thrombin-induced increase of F-actin in human umbilical vein endothelial cells. MicrovascRes 47:1–20

    CAS  Google Scholar 

  • Tojkander S, Gateva G, Schevzov G, Hotulainen P, Naumanen P, Martin C, Gunning PW, Lappalainen P (2011) A molecular pathway for myosin II recruitment to stress fibers. Curr Biol 21:539–550

    PubMed  CAS  Google Scholar 

  • Tojkander S, Gateva G, Lappalainen P (2012) Actin stress fibers–assembly, dynamics and biological roles. J Cell Sci 125:1855–1864

    PubMed  CAS  Google Scholar 

  • Vandenbroucke St Amant E, Tauseef M, Vogel SM, Gao XP, Mehta D, Komarova YA, Malik AB (2012) PKCalpha activation of p120-catenin serine 879 phospho-switch disassembles VE-cadherin junctions and disrupts vascular integrity. Circ Res 111:739–749

    PubMed  CAS  Google Scholar 

  • Vyalov S, Langille BL, Gotlieb AI (1996) Decreased blood flow rate disrupts endothelial repair in vivo. Am J Pathol 149:2107–2118

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wahl-Jensen VM, Afanasieva TA, Seebach J, Stroher U, Feldmann H, Schnittler HJ (2005) Effects of Ebola Virus Glycoproteins on Endothelial Cell Activation and Barrier Function. J Virol 79:10442–10450

    PubMed Central  PubMed  CAS  Google Scholar 

  • Weis WI, Nelson WJ (2006) Re-solving the cadherin-catenin-actin conundrum. J Biol Chem 281:35593–35597

    PubMed Central  PubMed  CAS  Google Scholar 

  • Weiss EE, Kroemker M, Rudiger AH, Jockusch BM, Rudiger M (1998) Vinculin is part of the cadherin-catenin junctional complex: complex formation between alpha-catenin and vinculin. J Cell Biol 141:755–764

    PubMed Central  PubMed  CAS  Google Scholar 

  • White GE, Fujiwara K (1986) Expression and intracellular distribution of stress fibers in aortic endothelium. J Cell Biol 103:63–70

    PubMed  CAS  Google Scholar 

  • White GE, Gimbrone MA Jr, Fujiwara K (1983) Factors influencing the expression of stress fibers in vascular endothelial cells in situ. J Cell Biol 97:416–424

    PubMed  CAS  Google Scholar 

  • Witting SR, Vallanda P, Gamble AL (2013) Characterization of a third generation lentiviral vector pseudotyped with Nipah virus envelope proteins for endothelial cell transduction. Gene Ther 20:997–1005

    PubMed  CAS  Google Scholar 

  • Wojciak-Stothard B, Ridley AJ (2002) Rho GTPases and the regulation of endothelial permeability. Vascul Pharmacol 39:187–199

    PubMed  CAS  Google Scholar 

  • Wojciak-Stothard B, Entwistle A, Garg R, Ridley AJ (1998) Regulation of TNF-alpha-induced reorganization of the actin cytoskeleton and cell-cell junctions by Rho, Rac, and Cdc42 in human endothelial cells. J Cell Physiol 176:150–165

    PubMed  CAS  Google Scholar 

  • Wong AJ, Pollard TD, Herman IM (1983) Actin filament stress fibers in vascular endothelial cells in vivo. Science 219:867–869

    PubMed  CAS  Google Scholar 

  • Wong RK, Baldwin AL, Heimark RL (1999) Cadherin-5 redistribution at sites of TNF-alpha and IFN-gamma-induced permeability in mesenteric venules. Am J Physiol 276:H736–H748

    PubMed  CAS  Google Scholar 

  • Wysolmerski RB, Lagunoff D (1990) Involvement of myosin light-chain kinase in endothelial cell retraction. Proc Natl Acad Sci USA 87:16–20

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wysolmerski RB, Lagunoff D (1991) Regulation of permeabilized endothelial cell retraction by myosin phosphorylation. Am J Physiol 261:C32–C40

    PubMed  CAS  Google Scholar 

  • Xiao K, Garner J, Buckley KM, Vincent PA, Chiasson CM, Dejana E, Faundez V, Kowalczyk AP (2005) p120-Catenin regulates clathrin-dependent endocytosis of VE-cadherin. Mol Biol Cell 16:5141–5151

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ (2005) Deconstructing the cadherin-catenin-actin complex. Cell 123:889–901

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yu PK, Yu D, Alder VA, Seydel U, Su E, Cringle SJ (1997) Heterogeneous endothelial cell structure along the porcine retinal microvasculature. Exp Eye Res 65:379–389

    PubMed  CAS  Google Scholar 

  • Zhou K, Muroyama A, Underwood J, Leylek R, Ray S, Soderling SH, Lechler T (2013) Actin-related protein2/3 complex regulates tight junctions and terminal differentiation to promote epidermal barrier formation. Proc Natl Acad Sci USA 110:E3820–E3829

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgement

The German Research Council, DFG INST 2105/24-1 and SCHN 430/6-1 to H.S. supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Schnittler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnittler, H., Taha, M., Schnittler, M.O. et al. Actin filament dynamics and endothelial cell junctions: the Ying and Yang between stabilization and motion. Cell Tissue Res 355, 529–543 (2014). https://doi.org/10.1007/s00441-014-1856-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1856-2

Keywords

Navigation