Skip to main content

Advertisement

Log in

The role of blood flow in vessel remodeling and its regulatory mechanism during developmental angiogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Vessel remodeling is essential for a functional and mature vascular network. According to the difference in endothelial cell (EC) behavior, we classified vessel remodeling into vessel pruning, vessel regression and vessel fusion. Vessel remodeling has been proven in various organs and species, such as the brain vasculature, subintestinal veins (SIVs), and caudal vein (CV) in zebrafish and yolk sac vessels, retina, and hyaloid vessels in mice. ECs and periendothelial cells (such as pericytes and astrocytes) contribute to vessel remodeling. EC junction remodeling and actin cytoskeleton dynamic rearrangement are indispensable for vessel pruning. More importantly, blood flow has a vital role in vessel remodeling. In recent studies, several mechanosensors, such as integrins, platelet endothelial cell adhesion molecule-1 (PECAM-1)/vascular endothelial cell (VE-cadherin)/vascular endothelial growth factor receptor 2 (VEGFR2) complex, and notch1, have been shown to contribute to mechanotransduction and vessel remodeling. In this review, we highlight the current knowledge of vessel remodeling in mouse and zebrafish models. We further underline the contribution of cellular behavior and periendothelial cells to vessel remodeling. Finally, we discuss the mechanosensory complex in ECs and the molecular mechanisms responsible for vessel remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All data generated during this study are included in this published article.

References

  1. Suzanne H, Huijun Y, Tailoi C-L (2000) Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest Ophthalmol Vis Sci 41(5):1217–1228

    Google Scholar 

  2. Andreas Z, Secomb TW, Pries AR (2002) Angioadaptation: keeping the vascular system in shape. News Physiol Sci 17:197–201. https://doi.org/10.1152/nips.01395.2001

    Article  Google Scholar 

  3. Pries AR, Secomb TW (2014) Making microvascular networks work: angiogenesis, remodeling, and pruning. Physiology 29(6):446–455. https://doi.org/10.1152/physiol.00012.2014

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gowri N, Yoshinobu O, Vikram P et al (2018) Developmental vascular regression is regulated by a Wnt/β-catenin, MYC and CDKN1A pathway that controls cell proliferation and cell death. Development 145(12):dev154898. https://doi.org/10.1242/dev.154898

    Article  CAS  Google Scholar 

  5. Claudia K, Augustin HG (2015) Mechanisms of vessel pruning and regression. Dev Cell 34(1):5–17. https://doi.org/10.1016/j.devcel.2015.06.004

    Article  CAS  Google Scholar 

  6. Udan Ryan S, Vadakkan Tegy J, Dickinson Mary E (2013) Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac. Development 140(19):4041–4050. https://doi.org/10.1242/dev.096255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lobov IB, Sujata R, Carroll TJ et al (2005) WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437(7057):417–421. https://doi.org/10.1038/nature03928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lang Richard A, Michael BJ (1993) Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell 74(3):453–462. https://doi.org/10.1016/0092-8674(93)80047-i

    Article  Google Scholar 

  9. Toshihide K, Westenskow PD, Krohne TU et al (2011) Astrocyte pVHL and HIF-α isoforms are required for embryonic-to-adult vascular transition in the eye. J Cell Biol 195(4):689–701. https://doi.org/10.1083/jcb.201107029

    Article  CAS  Google Scholar 

  10. Hiroyasu T, Takashi K, Huaqing G, Tsugio A (1999) Apoptosis of the hyaloid artery in the rat eye. Ann Anat 181(6):555–560. https://doi.org/10.1016/S0940-9602(99)80061-2

    Article  Google Scholar 

  11. Wang S, Ismail SZ, Ryan PJ et al (2017) Bim expression in endothelial cells and pericytes is essential for regression of the fetal ocular vasculature. PLoS ONE 12(5):e0178198. https://doi.org/10.1371/journal.pone.0178198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mitsuru A, Shigeo Y, Takahito N et al (2012) Involvement of periostin in regression of hyaloidvascular system during ocular development. Invest Ophthalmol Vis Sci 53(10):6495–6503. https://doi.org/10.1167/iovs.12-9684

    Article  CAS  Google Scholar 

  13. Meeson AP, Michael A, Kyung Ko et al (1999) VEGF deprivation-induced apoptosis is a component of programmed capillary regression. Development 126(7):1407–1415. https://doi.org/10.1242/dev.126.7.1407

    Article  CAS  PubMed  Google Scholar 

  14. Annette M, Michelle P, Marcella C, Richard L (1996) A relationship between apoptosis and flow during programmed capillary regression is revealed by vital analysis. Development 122(12):3929–3938. https://doi.org/10.1242/dev.122.12.3929

    Article  Google Scholar 

  15. Drake CJ, Little CD (1999) VEGF and vascular fusion: implications for normal and pathological vessels. J Histochem Cytochem 47(11):1351–1356. https://doi.org/10.1177/002215549904701101

    Article  CAS  PubMed  Google Scholar 

  16. Gifre-Renom L, Elizabeth AVJ (2021) Vessel enlargement in development and pathophysiology. Front Physiol 12:639645. https://doi.org/10.3389/fphys.2021.639645

    Article  PubMed  PubMed Central  Google Scholar 

  17. Finkelstein EB, Poole TJ (2003) Vascular endothelial growth factor: a regulator of vascular morphogenesis in the Japanese quail embryo. Anat Rec A Discov Mol Cell Evol Biol 272(1):403–414. https://doi.org/10.1002/ar.a.10047

    Article  CAS  PubMed  Google Scholar 

  18. Carmine G, Fleming Paul A, Vladimir M et al (2008) VEGF-mediated fusion in the generation of uniluminal vascular spheroids. Dev Dyn 237(10):2918–2925. https://doi.org/10.1007/978-3-642-16483-5_5436

    Article  Google Scholar 

  19. Fleming PA, Scott AW, Carmine G et al (2010) Fusion of uniluminal vascular spheroids: a model for assembly of blood vessels. Dev Dyn 239(2):398–406. https://doi.org/10.1002/dvdy.21720

    Article  PubMed  PubMed Central  Google Scholar 

  20. Claudio AF, Martin LJ, Miguel OB et al (2015) Dynamic endothelial cell rearrangements drive developmental vessel regression. PLoS Biol 13(5):e1002163. https://doi.org/10.1371/journal.pbio.1002163

    Article  CAS  Google Scholar 

  21. Suzanne H, Tailoi C-L (2000) Roles of endothelial cell migration and apoptosis in vascular remodeling during development of the central nervous system. Microcirculation 7(5):317–333. https://doi.org/10.1111/j.1549-8719.2000.tb00131.x

    Article  Google Scholar 

  22. Andreas S, Connor KM, Przemyslaw S et al (2010) The mouse retina as an angiogenesis model. Invest Ophthalmol Vis Sci 51(6):2813–2826. https://doi.org/10.1167/iovs.10-5176

    Article  Google Scholar 

  23. Senthil S, Tejas K, Marcus F (2018) Retinal vasculature development in health and disease. Prog Retin Eye Res 63:1–19. https://doi.org/10.1016/j.preteyeres.2017.11.001

    Article  CAS  Google Scholar 

  24. Ruslan R, Lisa G, Berre D, Schwab Martin E (2019) A revised view on growth and remodeling in the retinal vasculature. Sci Rep 9(1):3263. https://doi.org/10.1038/s41598-019-40135-2

    Article  CAS  Google Scholar 

  25. Jinxuan W, Jianxiong X, Guangchao Z et al (2022) Trans-2-enoyl-CoA reductase Tecr-driven lipid metabolism in endothelial cells protects against transcytosis to maintain blood-brain barrier homeostasis. Research 2022:9839368. https://doi.org/10.34133/2022/9839368

  26. Eva K, Anna L, Elin E et al (2013) Blood flow changes coincide with cellular rearrangements during blood vessel pruning in zebrafish embryos. PLoS ONE 8(10):e75060. https://doi.org/10.1371/journal.pone.0075060

    Article  CAS  Google Scholar 

  27. Anna L, Stephan D, Charles B et al (2015) Endothelial cell self-fusion during vascular pruning. PLoS Biol 13(4):e1002126. https://doi.org/10.1371/journal.pbio.1002126

    Article  CAS  Google Scholar 

  28. Lin W, Tao Z, Jinxuan W et al (2021) The blood flow-klf6a-tagln2 axis drives vessel pruning in zebrafish by regulating endothelial cell rearrangement and actin cytoskeleton dynamics. PLoS Genet 17(7):e1009690. https://doi.org/10.1371/journal.pgen.1009690

    Article  CAS  Google Scholar 

  29. Yannick B, Georg BH, Elin E et al (2008) Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev Biol 316(2):312–322. https://doi.org/10.1016/j.ydbio.2008.01.038

    Article  CAS  Google Scholar 

  30. Qi C, Luan J, Chun L et al (2012) Haemodynamics-driven developmental pruning of brain vasculature in zebrafish. PLoS Biol 10(8):e1001374. https://doi.org/10.1371/journal.pbio.1001374

    Article  CAS  Google Scholar 

  31. Lukas H, Yannick B, Alice K et al (2011) Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo. Curr Biol 21(22):1942–1948. https://doi.org/10.1016/j.cub.2011.10.016

    Article  CAS  Google Scholar 

  32. Pedro B, Carvalho JR, Franco CA (2016) Endothelial cell dynamics in vascular remodeling. Clin Hemorheol Microcirc 64(4):557–563. https://doi.org/10.3233/CH-168006

    Article  Google Scholar 

  33. Lowell TE, Claudio AF, Holger G, Miguel OB (2021) On the preservation of vessel bifurcations during flow-mediated angiogenic remodeling. PLoS Comput Biol 17(2):e1007715. https://doi.org/10.1371/journal.pcbi.1007715

    Article  CAS  Google Scholar 

  34. Charles B, Anna L, Georg BH, Markus A (2016) Cell behaviors and dynamics during angiogenesis. Development 143(13):2249–2260. https://doi.org/10.1242/dev.135616

    Article  CAS  Google Scholar 

  35. Zhang Yu, Bing Xu, Qi C et al (2018) Apoptosis of endothelial cells contributes to brain vessel pruning of zebrafish during development. Front Mol Neurosci 11:222. https://doi.org/10.3389/fnmol.2018.00222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nathalie T, Carmen R (2021) Contribution of cell death signaling to blood vessel formation. Cell Mol Life Sci 78(7):3247–3264. https://doi.org/10.1007/s00018-020-03738-x

    Article  CAS  Google Scholar 

  37. Nathalie T, Aida F-V, Rosario Y et al (2019) Caspase-8 modulates physiological and pathological angiogenesis during retina development. J Clin Invest 129(12):5092–5107. https://doi.org/10.1172/JCI122767

    Article  Google Scholar 

  38. Watson EC, Koenig MN, Grant ZL et al (2016) Apoptosis regulates endothelial cell number and capillary vessel diameter but not vessel regression during retinal angiogenesis. Development 143(16):2973–2982. https://doi.org/10.1242/dev.137513

    Article  CAS  PubMed  Google Scholar 

  39. Nicolas R, Michael S (2015) When it is better to regress: dynamics of vascular pruning. PLoS Biol 13(5):e1002148. https://doi.org/10.1371/journal.pbio.1002148

    Article  CAS  Google Scholar 

  40. Yuki W, Shigetomo F, Koji A et al (2015) Cdc42 mediates Bmp-Induced sprouting angiogenesis through Fmnl3-driven assembly of endothelial filopodia in zebrafish. Dev Cell 32(1):109–122. https://doi.org/10.1016/j.devcel.2014.11.024

    Article  CAS  Google Scholar 

  41. Kun PL, Véronique G, Katie B et al (2015) Formin-mediated actin polymerization at endothelial junctions is required for vessel lumen formation and stabilization. Dev Cell 32(1):123–132. https://doi.org/10.1016/j.devcel.2014.11.017

    Article  CAS  Google Scholar 

  42. Hans S, Muna T, Odenthal SM et al (2014) Actin filament dynamics and endothelial cell junctions: The Ying and Yang between stabilization and motion. Cell Tissue Res 355(3):529–543. https://doi.org/10.1007/s00441-014-1856-2

    Article  CAS  Google Scholar 

  43. Girard PR, Nerem RM (1995) Shear stress modulates endothelial cell morphology and F-actin organization through the regulation of focal adhesion-associated proteins. J Cell Physiol 163(1):179–193. https://doi.org/10.1002/jcp.1041630121

    Article  CAS  PubMed  Google Scholar 

  44. Mehdi I, Laura L, Daria T et al (2020) The effect of shear stress reduction on endothelial cells: a microfluidic study of the actin cytoskeleton. Biomicrofluidics 14(2):024115. https://doi.org/10.1063/1.5143391

    Article  CAS  Google Scholar 

  45. Huang Hu (2020) Pericyte-endothelial interactions in the retinal microvasculature. Int J Mol Sci 21(19):7413. https://doi.org/10.3390/ijms21197413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Benjamin LE, Itzhak H, Eli K (1998) A plasticity window for blood vessel remodeling is defined by pericyte coverage of the performed endothelial network and is regulated by PDGF-B and VEGF. Development 125(9):1591–1598. https://doi.org/10.1242/dev.125.9.1591

    Article  CAS  PubMed  Google Scholar 

  47. Benjamin LE, Dragan G, Ahuva I et al (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103(2):159–165. https://doi.org/10.1172/JCI5028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bodnar RJ, Rodgers ME, Chen William CW, Alan W (2013) Pericyte regulation of vascular remodeling through the CXC receptor 3. Arterioscler Thromb Vasc Biol 33(12):2818–2829. https://doi.org/10.1161/ATVBAHA.113.302012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Figueiredo AM, Pilar V, Rodrigo D-H et al (2020) Phosphoinositide 3-kinase-regulated pericyte maturation governs vascular remodeling. Circulation 142(7):688–704. https://doi.org/10.1161/CIRCULATIONAHA.119.042354

    Article  CAS  PubMed  Google Scholar 

  50. Juan DL, Hua FG (2019) Developmental vascular pruning in neonatal mouse retinas is programmed by the astrocytic oxygen-sensing mechanism. Development 146(8):dev175117. https://doi.org/10.1242/dev.175117

    Article  CAS  Google Scholar 

  51. Cheng Z, Peter G, Celine G et al (2005) A potential role for β- and γ-crystallins in the vascular remodeling of the eye. Dev Dyn 234(1):36–47. https://doi.org/10.1002/dvdy.20494

    Article  CAS  Google Scholar 

  52. Debasish S, Mallika V, Imran B et al (2012) βA3/A1-crystallin is required for proper astrocyte template formation and vascular remodeling in the retina. Transgenic Res 21(5):1033–1042. https://doi.org/10.1007/s11248-012-9608-0

    Article  CAS  Google Scholar 

  53. Debasish S, Andrew K, Yuri S et al (2008) βA3/A1-crystallin in astroglial cells regulates retinal vascular remodeling during development. Mol Cell Neurosci 37(1):85–95. https://doi.org/10.1016/j.mcn.2007.08.016

    Article  CAS  Google Scholar 

  54. Cheng Z, Laura A, Celine G et al (2011) A developmental defect in astrocytes inhibits programmed regression of the hyaloid vasculature in the mammalian eye. Eur J Cell Biol 90(5):440–448. https://doi.org/10.1016/j.ejcb.2011.01.003

    Article  CAS  Google Scholar 

  55. Eleni T, Mohamed I-T, Kiosses WB et al (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437(7057):426–431. https://doi.org/10.1038/nature03952

    Article  CAS  Google Scholar 

  56. Carmen U, Walter DH, Zeiher AM, Stefanie D (2000) Laminar shear stress upregulates integrin expression role in endothelial cell adhesion and apoptosis. Circ Res 87(8):683–689. https://doi.org/10.1161/01.res.87.8.683

    Article  Google Scholar 

  57. Tzima E, Miguel AP, Sanford JS et al (2001) Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J 20(17):4639–4647. https://doi.org/10.1093/emboj/20.17.4639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yoshito Y, Quoc TB, Karina R et al (2020) Matrix mechanotransduction mediated by thrombospondin-1/integrin/YAP in the vascular remodeling. Proc Natl Acad Sci USA 117(18):9896–9905. https://doi.org/10.1073/pnas.1919702117

    Article  CAS  Google Scholar 

  59. Polacheck WJ, Kutys ML, Jinling Y et al (2017) A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature 552(7684):258–262. https://doi.org/10.1038/nature24998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xie X, Zhou T, Wang Y et al (2018) Blood flow regulates zebrafish caudal vein plexus angiogenesis by ERK5-klf2a-nos2b signaling. Curr Mol Med 18(1):3–14. https://doi.org/10.2174/1566524018666180322153432

    Article  CAS  PubMed  Google Scholar 

  61. Ting S, Xiang X, Jianqing Z et al (2013) Effect of horizontal rotary culture on zebrafish vascular development (in Chinese). Hereditas 35(4):502–510. https://doi.org/10.3724/SP.J.1005.2013.00502

    Article  CAS  Google Scholar 

  62. Xiang X, Daoxi L, Qian Z et al (2019) Effect of simulated microgravity induced PI3K-nos2b signalling on zebrafish cardiovascular plexus network formation. J Biomech 87:83–92. https://doi.org/10.1016/j.jbiomech.2019.02.019

    Article  Google Scholar 

  63. Jennifer LL, Elizabeth AVJ, Chengqun H et al (2007) Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development 134(18):3317–3326. https://doi.org/10.1242/dev.02883

    Article  CAS  Google Scholar 

  64. Bum KH, Shengpeng W, Helker Christian SM et al (2016) In vivo modulation of endothelial polarization by Apelin receptor signalling. Nat Commun 7:11805. https://doi.org/10.1038/ncomms11805

    Article  CAS  Google Scholar 

  65. Beata W-S, Ridley AJ (2003) Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. J Cell Biol 161(2):429–439. https://doi.org/10.1083/jcb.200210135

    Article  CAS  Google Scholar 

  66. Akira K, Razaq B, Tatsuo T (1984) Adaptive regulation of wall shear stress optimizing vascular tree function. Bull Math Biol 46(1):127–137. https://doi.org/10.1007/BF02463726

    Article  Google Scholar 

  67. Stefanie D, Birgit A, Corinna H et al (1998) Fluid shear stress stimulates phosphorylation of akt in human endothelial cells: involvement in suppression of apoptosis. Circ Res 83(3):334–341. https://doi.org/10.1161/01.res.83.3.334

    Article  Google Scholar 

  68. Masafumi T, Berk BC (1996) Mitogen-activated protein kinase (ERK1/2) activation by shear stress and adhesion in endothelial cells: Essential role for a herbimycin-sensitive kinase. J Clin Invest 98(11):2623–2631. https://doi.org/10.1172/JCI119083

    Article  Google Scholar 

  69. Eguiluz RCA, Kaylan KB, Underhil GH, Leckband DE (2017) Substrate stiffness and VE-cadherin mechano-transduction coordinate to regulate endothelial monolayer integrity. Biomaterials 140:45–57. https://doi.org/10.1016/j.biomaterials.2017.06.010

    Article  CAS  Google Scholar 

  70. Mui KL, Chen CS, Assoian RK (2016) The mechanical regulation of integrin-cadherin crosstalk organizes cells, signaling and forces. J Cell Sci 129(6):1093–1100. https://doi.org/10.1242/jcs.183699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ramasri S, Paulina B-G, Müller CE et al (2017) P2Y2 receptor modulates shear stress-induced cell alignment and actin stress fibers in human umbilical vein endothelial cells. Cell Mol Life Sci 74(4):731–746. https://doi.org/10.1007/s00018-016-2365-0

    Article  CAS  Google Scholar 

  72. Conway DE, Breckenridge MT, Elizabeth H et al (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23(11):1024–1030. https://doi.org/10.1016/j.cub.2013.04.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Masaki O, Michitaka M, Ichi KK, Keigi F (2002) Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule? J Cell Biol 158(4):773–785. https://doi.org/10.1083/jcb.200205049

    Article  CAS  Google Scholar 

  74. Coon BG, Nicolas B, Jinah H et al (2015) Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex. J Cell Biol 208(7):975–986. https://doi.org/10.1083/jcb.201408103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nicolas B, Schwartz MA (2016) Biomechanics of vascular mechanosensation and remodeling. Mol Biol Cell 27(1):7–11. https://doi.org/10.1091/mbc.E14-11-1522

    Article  CAS  Google Scholar 

  76. Baeyens N, Nicoli S, Coon BG et al (2015) Vascular remodeling is governed by a vegfr3-dependent fluid shear stress set point. Elife 4:e04645. https://doi.org/10.7554/eLife.04645

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhongming C, Ellie T (2009) PECAM-1 is necessary for flow-induced vascular remodeling. Arterioscler Thromb Vasc Biol 29(7):1067–1073. https://doi.org/10.1161/ATVBAHA.109.186692

    Article  CAS  Google Scholar 

  78. Conway DE, Coon BG, Madhusuthan B et al (2017) VE-cadherin phosphorylation regulates endothelial fluid shear stress responses through the polarity protein LGN. Curr Biol 27(14):2219-2225.e5. https://doi.org/10.1016/j.cub.2017.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vincenza C, Peacock HM, Bahar K et al (2018) Shear stress and VE-cadherin the molecular mechanism of vascular fusion. Arterioscler Thromb Vasc Biol 38(9):2174–2183. https://doi.org/10.1161/ATVBAHA.118.310823

    Article  CAS  Google Scholar 

  80. Marta S, Hidetaka O, Dragan M et al (2012) Semaphorin 6A regulates angiogenesis by modulating VEGF signaling. Blood 120(19):4104–4115. https://doi.org/10.1182/blood-2012-02-410076

    Article  CAS  Google Scholar 

  81. Wencao Z, Le C, Hanru Y et al (2019) Endothelial CDS2 deficiency causes VEGFA-mediated vascular regression and tumor inhibition. Cell Res 29(11):895–910. https://doi.org/10.1038/s41422-019-0229-5

    Article  CAS  Google Scholar 

  82. Ivan L, Natalia M (2018) The role of Dll4/Notch signaling in normal and pathological ocular angiogenesis: Dll4 controls blood vessel sprouting and vessel remodeling in normal and pathological conditions. J Ophthalmol 2018:3565292. https://doi.org/10.1155/2018/3565292

    Article  CAS  Google Scholar 

  83. Rostama B, Peterson Sarah M, Vary Calvin PH, Lucy L (2014) Notch signal integration in the vasculature during remodeling. Vascul Pharmacol 63(2):97–104. https://doi.org/10.1016/j.vph.2014.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bart W, Edgar G, Saikin SK et al (2018) Blood flow-induced Notch activation and endothelial migration enable vascular remodeling in zebrafish embryos. Nat Commun 9(1):5314. https://doi.org/10.1038/s41467-018-07732-7

    Article  CAS  Google Scholar 

  85. Manuel E, Susanne A, Rui B, Adams RH (2013) Notch controls retinal blood vessel maturation and quiescence. Development 140(14):3051–3061. https://doi.org/10.1242/dev.093351

    Article  CAS  Google Scholar 

  86. Lobov IB, Eunice C, Rajeev W et al (2011) The DII4/Notch pathway controls postangiogenic blood vessel remodeling and regression by modulating vasoconstriction and blood flow. Blood 117(24):6728–6737. https://doi.org/10.1182/blood-2010-08-302067

    Article  CAS  PubMed  Google Scholar 

  87. Kun PL, Michael P, Leslie JD et al (2009) Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell 16(1):70–82. https://doi.org/10.1016/j.devcel.2008.12.009

    Article  CAS  Google Scholar 

  88. Zhongxiao W, Chi-Hsiu L, Shuo H, Jing C (2019) Wnt signaling in vascular eye diseases. Prog Retin Eye Res 70:110–133. https://doi.org/10.1016/j.preteyeres.2018.11.008

    Article  CAS  Google Scholar 

  89. Hans C, Roel N (2012) Wnt/β-catenin signaling and disease. Cell 149(6):1192–1205. https://doi.org/10.1016/j.cell.2012.05.012

    Article  CAS  Google Scholar 

  90. Elisabetta D (2010) The role of wnt signaling in physiological and pathological angiogenesis. Circ Res 107(8):943–952. https://doi.org/10.1161/CIRCRESAHA.110.223750

    Article  CAS  Google Scholar 

  91. Claudia K, Beate S, Junhao H et al (2014) Endothelial cell-derived non-canonical Wnt ligands control vascular pruning in angiogenesis. Development 141(8):1757–1766. https://doi.org/10.1242/dev.104422

    Article  CAS  Google Scholar 

  92. Olga K, Bisei O, Melanie H et al (2008) The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development. Development 135(22):3655–3664. https://doi.org/10.1242/dev.027284

    Article  CAS  Google Scholar 

  93. Beate S, Claudia K, Jessica W et al (2016) Endothelial RSPO3 controls vascular stability and pruning through non-canonical WNT/Ca2+/NFAT signaling. Dev Cell 36(1):79–93. https://doi.org/10.1016/j.devcel.2015.12.015

    Article  CAS  Google Scholar 

  94. Franco CA, Jones ML, Bernabeu MO et al (2016) Non-canonical wnt signalling modulates the endothelial shear stress flow sensor in vascular remodeling. Elife 5:e07727. https://doi.org/10.7554/eLife.07727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jenna M, Smith JR, Sanjid S et al (2017) The Wnt inhibitor apcdd1 coordinates vascular remodeling and barrier maturation of retinal blood vessels. Neuron 96(5):1055-1069.e6. https://doi.org/10.1016/j.neuron.2017.10.025

    Article  CAS  Google Scholar 

  96. Glaw JT, Skalak TC, Peirce SM (2010) Inhibition of canonical Wnt signaling increases microvascular hemorrhaging and venular remodeling in adult rats. Microcirculation 17(5):348–357. https://doi.org/10.1111/j.1549-8719.2010.00036.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Qiang Xu, Yanshu W, Alain D et al (2004) Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116(6):883–895. https://doi.org/10.1016/s0092-8674(04)00216-8

    Article  Google Scholar 

  98. Xin Ye, Yanshu W, Hugh C et al (2009) Norrin, Frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell 139(2):285–298. https://doi.org/10.1016/j.cell.2009.07.047

    Article  CAS  Google Scholar 

  99. Lucia C, Prykhozhij SV, Elizabeth C et al (2019) Frizzled 4 regulates ventral blood vessel remodeling in the zebrafish retina. Dev Dyn 248(12):1243–1256. https://doi.org/10.1002/dvdy.117

    Article  CAS  Google Scholar 

  100. Anna C, Stefan L, Radiosa G et al (2003) The conditional inactivation of the β-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. J Cell Biol 162(6):1111–1122. https://doi.org/10.1083/jcb.200212157

    Article  CAS  Google Scholar 

  101. Monica C, Daniel N, Fabrizio O et al (2010) The Wnt/β-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/notch signaling. Dev Cell 18(6):938–949. https://doi.org/10.1016/j.devcel.2010.05.006

    Article  CAS  Google Scholar 

  102. Chen J, Stahl A, Krah NM et al (2012) Retinal expression of Wnt-pathway mediated genes in low-density lipoprotein receptor-related protein 5 (Lrp5) knockout mice. PLoS ONE 7(1):e30203. https://doi.org/10.1371/journal.pone.0030203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Luhmann Ulrich FO, Jihong L, Niyazi A et al (2005) Role of the Norrie disease pseudoglioma gene in sprouting angiogenesis during development of the retinal vasculature. Invest Ophthalmol Vis Sci 46(9):3372–3382. https://doi.org/10.1167/iovs.05-0174

    Article  CAS  PubMed  Google Scholar 

  104. Sujata R, Lobov IB, Vallance JE et al (2007) Obligatory participation of macrophages in an angiopoietin 2-mediated cell death switch. Development 134(24):4449–4458. https://doi.org/10.1242/dev.012187

    Article  CAS  Google Scholar 

  105. Xie Xiang Hu, Jianjun WG (2012) Advance in biomechanical study of embryonic vascular system development (in Chinese). Hereditas 34(9):1123–1132. https://doi.org/10.3724/SP.J.1005.2012.01123

    Article  CAS  PubMed  Google Scholar 

  106. Wang G, Long T, Ying D (2003) Progress and prospect in research of effect of hemodynamic factors on vascular remodeling (in Chinese). J Chongqing Univ 26(8):102–105. https://doi.org/10.11835/j.issn.1000-582X.2003.08.027

    Article  Google Scholar 

  107. Thomas G (2010) Notch signaling in the vasculature. Curr Top Dev Biol 92:277–309. https://doi.org/10.1016/S0070-2153(10)92009-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by JinFeng Laboratory, Chongqing, China (jfkyjf202203001). The author would like to thank all the other members of the Public Experimental Center of the National Bioindustry Base (Chongqing) in charge of Professor Guixue Wang for their constructive discussion and support.

Funding

This work was supported in part by grants from the National Natural Science Foundation of China (12032007, 31971242) and JinFeng Laboratory, Chongqing, China (jfkyjf202203001).

Author information

Authors and Affiliations

Authors

Contributions

LW design, investigation and writing of the original draft. LW, WHY and LZ literature search, analysis and discussion. GXW and CJT conceptualization, critical revisions of the manuscript, supervision. All authors contributed to final approval of the manuscript.

Corresponding authors

Correspondence to Chaojun Tang or Guixue Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial interests to disclose.

Ethics approval and consent to participate

This is a review article, which did not need ethical approval.

Consent for publication

Human experiments are not involved in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, L., Yan, W., Zhu, L. et al. The role of blood flow in vessel remodeling and its regulatory mechanism during developmental angiogenesis. Cell. Mol. Life Sci. 80, 162 (2023). https://doi.org/10.1007/s00018-023-04801-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04801-z

Keywords

Navigation