Skip to main content
Log in

Candidates for the light entrainment pathway to the circadian clock of the Madeira cockroach Rhyparobia maderae

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The circadian pacemaker controlling locomotor activity rhythms in the Madeira cockroach is located at the accessory medulla (AMe). The ipsi- and contralateral compound eyes provide light input to the AMe, possibly via the γ-aminobutyric acid (GABA)-immunoreactive (-ir) distal tract, which connects the glomeruli of the AMe to the ipsilateral medulla and lamina. To identify possible light-entrainment pathways, double-label immunocytochemistry was performed employing antibodies against GABA, myoinhibitory peptide (MIP), allatotropin (AT) and orcokinin (ORC). While all antisera tested, except the anti-ORC, prominently stained the glomeruli of the AMe, colocalization with anti-GABA was detected neither in the glomeruli nor in the distal tract. However, one median neuron that colocalized GABA-, AT- and MIP-immunoreactivity appeared to connect all glomeruli of the AMe to the medulla and lamina. Furthermore, one distal–frontoventral local neuron with arborizations in all glomeruli of the AMe colocalized anti-AT- and anti-MIP immunoreactivity. As candidates for contralateral light entrainment pathways, one ventromedian and one ventral neuron colocalized MIP- and ORC immunoreactivity, projecting via posterior and anterior commissures. Both branched in the interglomerular region of the AMe, where arborizations co-labeled with anti-ORC- and anti-MIP antisera. A possible role for MIP in light entrainment is supported also by injections of Rhyparobia maderae-specific MIP-2, which generated an all-advance phase-response curve late at night. Future experiments will challenge our hypothesis that GABA-, MIP- and AT-ir neurons provide ipsilateral light entrainment to all glomeruli, while MIP- and ORC-ir neurons carry contralateral light entrainment to the AMe’s interglomerular region, either delaying or advancing AMe neurons light-dependently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ALae:

Accessory laminae

AMae:

Accessory medullae

AMe:

Accessory medulla

AOC:

Anterior optic commissure

AT:

Allatotropin

DFVNe:

Distal-frontoventral neuron

GABA:

γ-aminobutyric acid

-ir:

-immunoreactive

MIP:

Myoinhibitory peptide

MNe:

Median neuron

ORC:

Orcokinin

POC:

Posterior optic commissure

PRC:

Phase response curve

VMNe:

Ventromedian neuron

VNe:

Ventral neuron

References

  • Aguilar R, Maestro JL, Bellés X (2006) Effects of myoinhibitory peptides on food intake in the German cockroach. Physiol Entomol 31:257–261

    Article  CAS  Google Scholar 

  • Bungart D, Dircksen H, Keller R (1994) Quantitative determination and distribution of the myotropic neuropeptide orcokinin in the nervous system of astacidean crustaceans. Peptides 15:393–400

    Article  CAS  PubMed  Google Scholar 

  • el Baz S, Wei H, Grosshans J, Stengl M (2013) Calcium responses of circadian pacemaker neurons of the cockroach Rhyparobia maderae to acetylcholine and histamine. J Comp Physiol A 199:365–374

    Article  CAS  Google Scholar 

  • Hofer S, Homberg U (2006a) Orcokinin immunoreactivity in the accessory medulla of the cockroach Leucophaea maderae. Cell Tissue Res 325:589–600

    Article  CAS  PubMed  Google Scholar 

  • Hofer S, Homberg U (2006b) Evidence for a role of orcokinin-related peptides in the circadian clock controlling locomotor activity of the cockroach Leucophaea maderae. J Exp Biol 209:2794–2803

    Article  CAS  PubMed  Google Scholar 

  • Homberg U, Reischig T, Stengl M (2003) Neural organization of the circadian system of the cockroach Leucophaea maderae. Chronobiol Int 20:577–591

    Article  CAS  PubMed  Google Scholar 

  • Kataoka H, Toschi A, Li JP, Carney RL, Schooley DA, Kramer SJ (1989) Identification of an allatotropin from adult Manduca sexta. Science 243:1481–1483

    Article  CAS  PubMed  Google Scholar 

  • Loesel R, Homberg U (1999) Histamine-immunoreactive neurons in the brain of the cockroach Leucophaea maderae. Brain Res 842:408–418

    Article  CAS  PubMed  Google Scholar 

  • Loesel R, Homberg U (2001) Anatomy and physiology of neurons with processes in the accessory medulla of the cockroach Leucophaea maderae. J Comp Neurol 439:193–207

    Article  CAS  PubMed  Google Scholar 

  • Nishiitsutsuji-Uwo J, Pittendrigh CS (1968) Central nervous system control of circadian rhythmicity in the cockroach. III. The optic lobes, locus of the driving oscillation? Z vergl Physiol 58:14–46

    Article  Google Scholar 

  • Nishiitsutsuji-Uwo J, Pittendrigh CS (1986) Central nervous system control of circadian rhythmicity in the cockroach. II. The pathway of light signals that entrain the rhythm. Z vergl Physiol 58:1–13

    Article  Google Scholar 

  • Page TL (1982) Transplantation of the cockroach circadian pacemaker. Science 216:73–75

    Article  CAS  PubMed  Google Scholar 

  • Page TL, Barrett RK (1989) Effects of light on circadian pacemaker development. II. Responses to light. J Comp Physiol A 165:51–59

    Article  CAS  PubMed  Google Scholar 

  • Page TL, Caldarola PC, Pittendrigh CS (1977) Mutual entrainment of bilaterally distributed circadian pacemaker. Proc Natl Acad Sci U S A 74:1277–1281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petri B, Stengl M (2001) Phase response curves of a molecular model oscillator: implications for mutual coupling of paired oscillators. J Biol Rhythms 16:125–141

    Article  CAS  PubMed  Google Scholar 

  • Petri B, Stengl M, Wurden S, Homberg U (1995) Immunocytochemical characterization of the accessory medulla in the cockroach Leucophaea maderae. Cell Tissue Res 282:3–19

    Article  CAS  PubMed  Google Scholar 

  • Petri B, Homberg U, Loesel R, Stengl M (2002) Evidence for a role of GABA and Mas-allatotropin in photic entrainment of the circadian clock of the cockroach Leucophaea maderae. J Exp Biol 205:1459–1469

    CAS  PubMed  Google Scholar 

  • Predel R, Nachman RJ (2001) Efficacy of native FXPRLamides (pyrokinins) and synthetic analogs on visceral muscles of the American cockroach. J Insect Physiol 47:287–293

    Article  CAS  PubMed  Google Scholar 

  • Reischig T, Stengl M (1996) Morpholgy and pigment-dispersing hormone immunocytochemistry of the accessory medulla, the presumptive circadian pacemaker of the cockroach Leucophaea maderae: a light- and electron-microscopic study. Cell Tissue Res 285:305–319

    Article  Google Scholar 

  • Reischig T, Stengl M (2002) Optic lobe commissures in a three-dimensional brain model of the cockroach Leucophaea maderae: a search for the circadian coupling pathways. J Comp Neurol 443:388–400

    Article  PubMed  Google Scholar 

  • Reischig T, Stengl M (2003a) Ectopic transplantation of the accessory medulla restores circadian locomotor rhythms in arrhythmic cockroaches (Leucophaea maderae). J Exp Biol 206:1877–1886

    Article  PubMed  Google Scholar 

  • Reischig T, Stengl M (2003b) Ultrastructure of pigment-dispersing hormone-immunoreactive neurons in a three-dimensional model of the accessory medulla of the cockroach Leucophaea maderae. Cell Tissue Res 314:421–435

    Article  PubMed  Google Scholar 

  • Reischig T, Petri B, Stengl M (2004) Pigment-dispersing hormone (PDH)-immunoreactive neurons form a direct coupling pathway between the bilaterally symmetric circadian pacemakers of the cockroach Leucophaea maderae. Cell Tissue Res 318:553–564

    Article  CAS  PubMed  Google Scholar 

  • Roberts S (1965) Photoreception and entrainment of cockroach activity rhythms. Science 148:958–959

    Article  CAS  PubMed  Google Scholar 

  • Roth AL, Marzola E, Rizzi A, Arduin M, Trapella C, Corti C, Vergura R, Martinelli P, Salvadori S, Regoli D, Corsi M, Cavanni P, Calo G, Guerrini R (2006) Structure–activity studies on neuropeptide S: identification of the amino acid residues crucial for receptor activation. J Biol Chem 281:20809–20816

    Article  CAS  PubMed  Google Scholar 

  • Schmid B, Helfrich-Forster C, Yoshii T (2011) A new ImageJ plug-in "ActogramJ" for chronobiological analyses. J Biol Rhythms 26:464–467

    Article  PubMed  Google Scholar 

  • Schulze J, Neupert S, Schmidt L, Predel R, Lamkemeyer T, Homberg U, Stengl M (2012) Myoinhibitory peptides in the brain of the cockroach Leucophaea maderae and colocalization with pigment-dispersing factor in circadian pacemaker cells. J Comp Neurol 520:1078–1097

    Article  CAS  PubMed  Google Scholar 

  • Schulze J, Schendzielorz T, Neupert S, Predel R, Stengl M (2013) Neuropeptidergic input pathways to the circadian pacemaker center of the Madeira cockroach analyzed with an improved injection technique. Eur J Neurosci 38(6):2842–2852

    PubMed  Google Scholar 

  • Soehler S, Neupert S, Predel R, Stengl M (2008) Examination of the role of FMRFamide-related peptides in the circadian clock of the cockroach Leucophaea maderae. Cell Tissue Res 332:257–269

    Article  CAS  PubMed  Google Scholar 

  • Soehler S, Stengl M, Reischig T (2011) Circadian pacemaker coupling by multi-peptidergic neurons in the cockroach Leucophaea maderae. Cell Tissue Res 343:559–577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sokolove PG (1975) Localization of the cockroach optic lobe circadian pacemaker with microlesions. Brain Res 87:13–21

    Article  CAS  PubMed  Google Scholar 

  • Stangier J, Hilbich C, Burdzik S, Keller R (1992) Orcokinin: a novel myotropic peptide from the nervous system of the crayfish, Orconectes limosus. Peptides 13:859–864

    Article  CAS  PubMed  Google Scholar 

  • Stengl M, Homberg U (1994) Pigment-dispersing hormone-immunoreactive neurons in the cockroach Leucophaea maderae share properties with circadian pacemaker neurons. J Comp Physiol A 175:203–213

    Article  CAS  PubMed  Google Scholar 

  • Veenstra JA (2009) Peptidergic paracrine and endocrine cells in the midgut of the fruit fly maggot. Cell Tissue Res 336:309–323

    Article  CAS  PubMed  Google Scholar 

  • Veenstra JA, Haaegdorn HH (1993) Sensitive enzyme immunoassay for Manduca allatotropin and the existence of an allatotropin-immunoreactive peptide in Periplaneta americana. Arch Insect Biochem 23:99-109

    Google Scholar 

  • Wei H, el Jundi B, Homberg U, Stengl M (2010) Implementation of pigment-dispersing factor-immunoreactive neurons in a standardized atlas of the brain of the cockroach Leucophaea maderae. J Comp Neurol 518:4113–4133

    Article  PubMed  Google Scholar 

  • Williamson M, Lenz C, Winther AM, Nassel DR, Grimmelikhuijzen CJ (2001) Molecular cloning, genomic organization, and expression of a B-type (cricket-type) allatostatin preprohormone from Drosophila melanogaster. Biochem Biophys Res Commun 281:544–550

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), grant number STE531/21-1 (to M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Stengl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schendzielorz, J., Stengl, M. Candidates for the light entrainment pathway to the circadian clock of the Madeira cockroach Rhyparobia maderae . Cell Tissue Res 355, 447–462 (2014). https://doi.org/10.1007/s00441-013-1757-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1757-9

Keywords

Navigation