Skip to main content

Advertisement

Log in

Gap-junction-mediated cell-to-cell communication

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Cells of multicellular organisms need to communicate with each other and have evolved various mechanisms for this purpose, the most direct and quickest of which is through channels that directly connect the cytoplasms of adjacent cells. Such intercellular channels span the two plasma membranes and the intercellular space and result from the docking of two hemichannels. These channels are densely packed into plasma-membrane spatial microdomains termed “gap junctions” and allow cells to exchange ions and small molecules directly. A hemichannel is a hexameric torus of junctional proteins around an aqueous pore. Vertebrates express two families of gap-junction proteins: the well-characterized connexins and the more recently discovered pannexins, the latter being related to invertebrate innexins (“invertebrate connexins”). Some gap-junctional hemichannels also appear to mediate cell-extracellular communication. Communicating junctions play crucial roles in the maintenance of homeostasis, morphogenesis, cell differentiation and growth control in metazoans. Gap-junctional channels are not passive conduits, as previously long regarded, but use “gating” mechanisms to open and close the central pore in response to biological stimuli (e.g. a change in the transjunctional voltage). Their permeability is finely tuned by complex mechanisms that have just begun to be identified. Given their ubiquity and diversity, gap junctions play crucial roles in a plethora of functions and their dysfunctions are involved in a wide range of diseases. However, the exact mechanisms involved remain poorly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almeida NA, Cordeiro A, Machado DS, Souza LL, Ortiga-Carvalho TM, Campos-de-Carvalho AC, Wondisford FE, Pazos-Moura CC (2009) Connexin40 messenger ribonucleic acid is positively regulated by thyroid hormone (TH) acting in cardiac atria via the TH receptor. Endocrinology 150:546–554

    Article  PubMed  CAS  Google Scholar 

  • Apps SA, Rankin WA, Kurmis AP (2007) Connexin 26 mutations in autosomal recessive deafness disorders: a review. Int J Audiol 46:75–81

    Article  PubMed  Google Scholar 

  • Bedner P, Niessen H, Odermatt B, Willecke K, Harz H (2003) A method to determine the relative cAMP permeability of connexin channels. Exp Cell Res 291:25–35

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield SA, Völgyi B (2009) The diverse functional roles and regulation of neuronal gap junctions in the retina. Nat Rev Neurosci 10:495–506

    Article  PubMed  CAS  Google Scholar 

  • Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci USA 100:13644–13649

    Article  PubMed  CAS  Google Scholar 

  • Bunse S, Haghika A, Zoidl G, Dermietzel R (2005) Identification of a potential regulator of the gap junction protein pannexin1. Cell Comm Adhes 12:231–236

    Article  CAS  Google Scholar 

  • Chanson M, Kotsias BA, Peracchia C, O'Grady SM (2007) Interactions of connexins with other membrane channels and transporters. Prog Biophys Mol Biol 94:233–244

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Zhou Y, Lin X, Wong HC, Xu Q, Jiang J, Wang S, Lurtz MM, Louis CF, Veenstra RD, Yang JJ (2011) Molecular interaction and functional regulation of connexin50 gap junctions by calmodulin. Biochem J 435:711–722

    Article  PubMed  CAS  Google Scholar 

  • Cronier L, Crespin S, Strale PO, Defamie N, Mesnil M (2009) Gap junctions and cancer: new functions for an old story. Antioxid Redox Signal 11:323–338

    Article  PubMed  CAS  Google Scholar 

  • Dahl G, Harris AL (2008) Pannexins or connexins? In: Harris AL, Locke D (eds) Connexins, a guide. Humana, New York, pp 287–302

    Google Scholar 

  • Délèze J (1970) The recovery of resting potential and input resistance in sheep heart injured by knife or laser. J Physiol (Lond) 208:547–562

    Google Scholar 

  • Délèze J, Delage B, Hentati-Ksibi O, Verrecchia F, Hervé JC (2001) Fluorescence recovery after photobleaching. Meth Mol Biol 154:313–327

    Google Scholar 

  • Derangeon M, Bozon V, Defamie N, Peineau N, Bourmeyster N, Sarrouilhe D, Argibay JA, Hervé JC (2010) 5-HT4 and 5-HT2 receptors antagonistically influence gap junctional coupling between rat auricular myocytes. J Mol Cell Cardiol 48:220–229

    Article  PubMed  CAS  Google Scholar 

  • Desplantez T, McCain M, Beauchamp P, Rigoli G, Rothen-Rutishauser B, Parker KK, Kléber AG (2012) Connexin 43 ablation in fetal atrial myocytes decreases electrical coupling, partner connexins and sodium current. Cardiovasc Res 94:58–65

    Article  PubMed  CAS  Google Scholar 

  • Dodd R, Peracchia C, Stolady D, Török K (2008) Calmodulin association with connexin32-derived peptides suggests trans-domain interaction in chemical gating of gap junction channels. J Biol Chem 283:26911–26920

    Article  PubMed  CAS  Google Scholar 

  • Dupont G, Combettes L, Leybaert L (2007) Calcium dynamics: spatio-temporal organization from the subcellular to the organ level. Int Rev Cytol 261:193–245

    Article  PubMed  CAS  Google Scholar 

  • Duquesnes N, Derangeon M, Métrich M, Lucas A, Mateo P, Li L, Morel E, Lezoualc'h F, Crozatier B (2010) Epac stimulation induces rapid increases in connexin43 phosphorylation and function without preconditioning effect. Pflügers Arch 460:731–741

    Article  PubMed  CAS  Google Scholar 

  • Ek-Vitorin JF, Burt JM (2012) Structural basis for the selective permeability of channels made of communicating junction proteins. Biochim Biophys Acta (in press)

  • González D, Gómez-Hernández JM, Barrio LC (2007) Molecular basis of voltage dependence of connexin channels: an integrative appraisal. Prog Biophys Mol Biol 94:66–106

    Article  PubMed  Google Scholar 

  • Goodenough DA, Paul DL (2003) Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4:285–294

    Article  PubMed  CAS  Google Scholar 

  • Harris AL (2001) Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34:325–472

    Article  PubMed  CAS  Google Scholar 

  • Harris AL (2007) Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol 94:120–143

    Article  PubMed  CAS  Google Scholar 

  • Hervé JC, Dhein S (2010) Peptides targeting gap junctional structures. Curr Pharmaceut Des 16:3056–3070

    Article  Google Scholar 

  • Hervé JC, Sarrouilhe D (2005) Connexin-made channels as pharmacological targets. Curr Pharm Des 11:1941–1958

    Article  PubMed  Google Scholar 

  • Hervé JC, Sarrouilhe D (2006) Protein phosphatase modulation of the intercellular junctional communication: importance in cardiac myocytes. Prog Biophys Mol Biol 90:225–248

    Article  PubMed  Google Scholar 

  • Hervé JC, Plaisance I, Loncarek J, Duthe F, Sarrouilhe D (2004) Is the junctional uncoupling elicited in rat ventricular myocytes by some dephosphorylation treatments due to changes in the phosphorylation status of Cx43? Eur Biophys J 33:201–210

    Article  PubMed  Google Scholar 

  • Hervé JC, Derangeon M, Sarrouilhe D, Giepmans BNG, Bourmeyster N (2012) Gap junctional channels are parts of multiprotein complexes. Biochim Biophys Acta 1818:1844–1865

    Article  PubMed  Google Scholar 

  • Hoshi T, Zagotta WN, Aldrich RW (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250:533–538

    Article  PubMed  CAS  Google Scholar 

  • Iovine MK, Gumpert AM, Falk MM, Mendelson TC (2008) Cx23, a connexin with only four extracellular-loop cysteines, forms functional gap junction channels and hemichannels. FEBS Lett 582:165–170

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa M, Iwamoto T, Nakamura T, Doyle A, Fukumoto S, Yamada Y (2011) Pannexin 3 functions as an ER Ca2+ channel, hemichannel, and gap junction to promote osteoblast differentiation. J Cell Biol 193:1257–1274

    Article  PubMed  CAS  Google Scholar 

  • Jansen JA, Noorman M, Musa H, Stein M, Jong S de, Nagel R van der, Hund TJ, Mohler PJ, Vos MA, Veen TA van, Bakker JM de, Delmar M, Rijen HV van (2012) Reduced heterogeneous expression of Cx43 results in decreased Nav1.5 expression and reduced sodium current that accounts for arrhythmia vulnerability in conditional Cx43 knockout mice. Heart Rhythm 9:600–607

    Article  PubMed  Google Scholar 

  • Kovacs JA, Baker KA, Altenberg G, Abagyan R, Yeager M (2007) Molecular modeling and mutagenesis of gap junction channels. Prog Biophys Mol Biol 94:15–28

    Article  PubMed  CAS  Google Scholar 

  • Levit NA, Mese G, Basaly MG, White TW (2011) Pathological hemichannels associated with human Cx26 mutations causing keratitis-ichthyosis-deafness syndrome. Biochim Biophys Acta 1818:2014–2019

    PubMed  Google Scholar 

  • Liu J, Xu J, Gu S, Nicholson BJ, Jiang JX (2011) Aquaporin 0 enhances gap junction coupling via its cell adhesion function and interaction with connexin 50. J Cell Sci 124:198–206

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Taffet S, Stoner L, Delmar M, Vallano ML, Jalife J (1993) A structural basis for the unequal sensitivity of the major cardiac and liver gap junctions to intracellular acidification: the carboxyl tail length. Biophys J 64:1422–1433

    Article  PubMed  CAS  Google Scholar 

  • Malhotra JD, Thyagarajan V, Chen C, Isom LL (2004) Tyrosine-phosphorylated and nonphosphorylated sodium channel beta1 subunits are differentially localized in cardiac myocytes. J Biol Chem 279:40748–40754

    Article  PubMed  CAS  Google Scholar 

  • Moreno AP, Lau AF (2007) Gap junction channel gating modulated through protein phosphorylation. Prog Biophys Mol Biol 94:107–119

    Article  PubMed  CAS  Google Scholar 

  • Nicchia GP, Srinivas M, Li W, Brosnan CF, Frigeri A, Spray DC (2005) New possible roles for aquaporin-4 in astrocytes: cell cytoskeleton and functional relationship with connexin43. FASEB J 19:1674–1676

    PubMed  CAS  Google Scholar 

  • Nualart-Marti A, Solsona C, Fields RD (2012) Gap junction communication in myelinating glia. Biochim Biophys Acta (in press)

  • Palacios-Prado N, Bukauskas FF (2012) Modulation of metabolic communication through gap junction channels by transjunctional voltage; synergistic and antagonistic effects of gating and ionophoresis. Biochim Biophys Acta 1818:1884–1894

    Article  PubMed  CAS  Google Scholar 

  • Panchin YV (2005) Evolution of gap junction proteins—the pannexin alternative. J Exp Biol 208:1415–1419

    Article  PubMed  CAS  Google Scholar 

  • Panchin Y, Kelmanson I, Matz M, Lukyanov K, Usman N, Lukyanov S (2000) A ubiquitous family of putative gap junction molecules. Curr Biol 10:R479–R480

    Article  Google Scholar 

  • Patel SJ, Milwid JM, King KR, Bohr S, Iracheta-Velle A, Li M, Vitalo A, Parekkadan B, Jindal R, Yarmush ML (2012) Gap junction inhibition prevents drug-induced liver toxicity and fulminant hepatic failure. Nat Biotechnol 30:179–183

    Article  PubMed  CAS  Google Scholar 

  • Penuela S, Gehi R, Laird DW (2012) The biochemistry and function of pannexin channels. Biochim Biophys Acta (in press)

  • Peracchia C, Bernardini G, Peracchia LL (1983) Is calmodulin involved in the regulation of gap junction permeability? Pflügers Arch 399:152–154

    Article  PubMed  CAS  Google Scholar 

  • Phelan P (2005) Innexins: members of an evolutionarily conserved family of gap-junction proteins. Biochim Biophys Acta 1711:225–245

    Article  PubMed  CAS  Google Scholar 

  • Phelan P, Bacon JP, Davies JA, Stebbings LA, Todman MG, Avery L, Baines RA, Barnes TM, Ford C, Hekimi S, Lee R, Shaw JE, Starich TA, Curtin KD, Sun Y-A, Wyman RJ (1998) Innexins: a family of invertebrate gap-junction proteins. Trends Genet 14:348–349

    Article  PubMed  CAS  Google Scholar 

  • Rash JE, Pereda A, Kamasawa N, Furman CS, Yasumura T, Davidson KG, Dudek FE, Olson C, Li X, Nagy JI (2004) High-resolution proteomic mapping in the vertebrate central nervous system: close proximity of connexin35 to NMDA glutamate receptor clusters and co-localization of connexin36 with immunoreactivity for zonula occludens protein-1 (ZO-1). J Neurocytol 33:131–151

    Article  PubMed  CAS  Google Scholar 

  • Rörig B, Sutor B (1996) Regulation of gap junction coupling in the developing neocortex. Mol Neurobiol 12:225–249

    Article  PubMed  Google Scholar 

  • Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC (2003) Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 83:1359–1400

    PubMed  CAS  Google Scholar 

  • Saez JC, Schalper KA, Retamal MA, Orellana JA, Shoji KF, Bennett MV (2010) Cell membrane permeabilization via connexin hemichannels in living and dying cells. Exp Cell Res 316:2377–2389

    Article  PubMed  CAS  Google Scholar 

  • Salameh A, Dhein S (2011) Adrenergic control of cardiac gap junction function and expression. N Schmied Arch Pharmacol 383:331–346

    Article  CAS  Google Scholar 

  • Sato PY, Coombs W, Lin W, Nekrasova O, Green KJ, Isom LL, Taffet SM, Delmar M (2011) Interactions between ankyrin-g, plakophilin-2, and connexin43 at the cardiac intercalated disc. Circ Res 109:193–201

    Article  PubMed  CAS  Google Scholar 

  • Scott CA, Tattersall D, O'Toole EA, Kelsell DP (2012) Connexins in epidermal homeostasis and skin disease. Biochim Biophys Acta 1818:1952–1961

    Article  PubMed  CAS  Google Scholar 

  • Severs NJ, Bruce AF, Dupont E, Rothery S (2008) Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res 80:9–19

    Article  PubMed  CAS  Google Scholar 

  • Sosinsky GE, Boassa D, Dermietzel R, Duffy HS, Laird DW, MacVicar B, Naus CC, Penuela S, Scemes E, Spray DC, Thompson RJ, Zhao HB, Dahl G (2011) Pannexin channels are not gap junction hemichannels. Channels (Austin) 5:193–197

    Article  CAS  Google Scholar 

  • White TW, Wang H, Mui R, Litteral J, Brink PR (2004) Cloning and functional expression of invertebrate connexins from Halocynthia pyriformis. FEBS Lett 577:42–48

    Article  PubMed  CAS  Google Scholar 

  • Yu XS, Yin X, Lafer EM, Jiang JX (2005) Developmental regulation of the direct interaction between the intracellular loop of connexin 45.6 and the C terminus of major intrinsic protein (aquaporin-0). J Biol Chem 280:22081–22090

    Article  PubMed  CAS  Google Scholar 

  • Yue P, Zhang Y, Du Z, Xiao J, Pan Z, Wang N, Yu H, Ma W, Qin H, Wang WH, Lin DH, Yang B (2006) Ischemia impairs the association between connexin 43 and M3 subtype of acetylcholine muscarinic receptor (M3-mAChR) in ventricular myocytes. Cell Physiol Biochem 17:129–136

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Yang W, Lurtz MM, Ye Y, Huang Y, Lee HW, Chen Y, Louis CF, Yang JJ (2007) Identification of the calmodulin binding domain of connexin 43. J Biol Chem 282:35005–35017

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Yang W, Lurtz MM, Chen Y, Jiang J, Huang Y, Louis CF, Yang JJ (2009) Calmodulin mediates the Ca2+-dependent regulation of Cx44 gap junctions. Biophys J96:2832–2848

    Article  Google Scholar 

  • Zsiros V, Maccaferri G (2008) Noradrenergic modulation of electrical coupling in GABAergic networks of the hippocampus. J Neurosci 28:1804–1815

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Hervé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hervé, JC., Derangeon, M. Gap-junction-mediated cell-to-cell communication. Cell Tissue Res 352, 21–31 (2013). https://doi.org/10.1007/s00441-012-1485-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1485-6

Keywords

Navigation