Skip to main content
Log in

Characterization of a plasma membrane Ca2+ ATPase expressed in olfactory receptor neurons of the moth Spodoptera littoralis

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The response of insect olfactory receptor neurons (ORNs) involves an increase in intracellular Ca2+ concentration, as in vertebrate ORNs. In order to decipher the Ca2+ clearance mechanisms in insect ORNs, we have investigated the presence of a plasma membrane Ca2+ ATPase (PMCA) in the peripheral olfactory system of the moth Spodoptera littoralis. From an analysis of a male antennal expressed-sequence-tag database combined with a strategy of 5′/3′ rapid amplification of cDNA ends plus the polymerase chain reaction, we have cloned a full-length cDNA encoding a PMCA. In adult males, the PMCA transcript has been found in various tissues, including the antennae in which its presence has been detected in the sensilla trichodea, and in cultured ORNs. The PMCA gene is slightly expressed at the end of the pupal stage, reaches a maximum at emergence and is maintained at a high level during the adult period. Taken together, these results provide, for the first time, molecular evidence for the putative participation of a PMCA in signalling pathways responsible for the establishment and functioning of the insect peripheral olfactory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  PubMed  CAS  Google Scholar 

  • Anderson P, Hansson BS, Lofqvist J (1995) Plant-odour-specific receptor neurones on the antennae of female and male Spodoptera littoralis. Physiol Entomol 20:189–198

    Article  CAS  Google Scholar 

  • Antolin S, Matthews HR (2007) The effect of external sodium concentration on sodium-calcium exchange in frog olfactory receptor cells. J Physiol (Lond) 581:495–503

    Article  Google Scholar 

  • Antolin S, Reisert J, Matthews HR (2010) Olfactory response termination involves Ca2+-ATPase in vertebrate olfactory receptor neuron cilia. J Gen Physiol 135:367–378

    Article  PubMed  CAS  Google Scholar 

  • Audinat E, Lambolez B, Rossier J (1996) Functional and molecular analysis of glutamate-gated channels by patch-clamp and RT-PCR at the single cell level. Neurochem Int 28:119–136

    Article  PubMed  CAS  Google Scholar 

  • Brandt PC, Sisken JE, Neve RL, Vanaman TC (1996) Blockade of plasma membrane calcium pumping ATPase isoform I impairs nerve growth factor-induced neurite extension in pheochromocytoma cells. Proc Natl Acad Sci USA 93:13843–13848

    Article  PubMed  CAS  Google Scholar 

  • Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89:1341–1378

    Article  PubMed  CAS  Google Scholar 

  • Brini M, Carafoli E (2011) The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb Perspect Biol 3:1–15

    Article  Google Scholar 

  • Brodin P, Falchetto R, Vorherr T, Carafoli E (1992) Identification of two domains which mediate the binding of activating phospholipids to the plasma-membrane Ca2+ pump. Eur J Biochem 204:939–946

    Article  PubMed  CAS  Google Scholar 

  • Carafoli E (1991) The calcium pumping ATPase of the plasma membrane. Annu Rev Physiol 53:531–547

    Article  PubMed  CAS  Google Scholar 

  • Castillo K, Delgado R, Bacigalupo J (2007) Plasma membrane Ca2+-ATPase in the cilia of olfactory receptor neurons: possible role in Ca2+ clearance. Eur J Neurosci 26:2524–2531

    Article  PubMed  Google Scholar 

  • Chouquet B, Bozzolan F, Solvar M, Duportets L, Jacquin-Joly E, Lucas P, Debernard S (2008) Molecular cloning and expression patterns of a putative olfactory diacylglycerol kinase from the noctuid moth Spodoptera littoralis. Insect Mol Biol 17:485–493

    Article  PubMed  CAS  Google Scholar 

  • Chouquet B, Debernard S, Bozzolan F, Solvar M, Maibeche-Coisne M, Lucas P (2009) A TRP channel is expressed in Spodoptera littoralis antennae and is potentially involved in insect olfactory transduction. Insect Mol Biol 18:213–222

    Article  PubMed  CAS  Google Scholar 

  • Di Leva F, Domi T, Fedrizzi L, Lim D, Carafoli E (2008) The plasma membrane Ca2+ ATPase of animal cells: structure, function and regulation. Arch Biochem Biophys 476:65–74

    Article  PubMed  Google Scholar 

  • Durand N, Carot-Sans G, Chertemps T, Bozzolan F, Party V, Renou M, Debernard S, Rosell G, Maibeche-Coisne M (2011) Characterization of an antennal carboxylesterase from the pest moth Spodoptera littoralis degrading a host plant odorant. PLoS One 5:e15026

    Article  Google Scholar 

  • Furuta H, Luo L, Hepler K, Ryan AF (1998) Evidence for differential regulation of calcium by outer versus inner hair cells: plasma membrane Ca-ATPase gene expression. Hear Res 123:10–26

    Article  PubMed  CAS  Google Scholar 

  • Gopinath RM, Vincenzi FF (1977) Phosphodiesterase protein activator mimics red blood cell cytoplasmic activator of (Ca2+-Mg2+)ATPase. Biochem Biophys Res Commun 77:1203–1209

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Lucas P, Rospars J-P (2009) Computational model of the insect pheromone transduction cascade. PLoS Comput Biol 53:e1000321

    Article  Google Scholar 

  • Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Leal WS (2005) Rapid inactivation of a moth pheromone. Proc Natl Acad Sci USA 102:14075–14079

    Article  PubMed  CAS  Google Scholar 

  • Jacquin-Joly E, Lucas P (2005) Pheromone reception and transduction: mammals and insects illustrate converging mechanisms across phyla. Curr Top Neurochem 4:75–105

    CAS  Google Scholar 

  • Jacquin-Joly E, Francois MC, Burnet M, Lucas P, Bourrat F, Maida R (2002) Expression pattern in the antennae of a newly isolated lepidopteran Gq protein alpha subunit cDNA. Eur J Biochem 269:2133–2142

    Article  PubMed  CAS  Google Scholar 

  • Jarrett HW, Reid TB, Penniston JT (1977) Concurrent inhibition of the low-affinity Ca2+-stimulated ATPase and MgATP-dependent endocytosis in erythrocyte ghosts by N-naphthylmaleimide and carbonylcyanide-m-chlorophenylhydrazone. Arch Biochem Biophys 183:498–510

    Article  PubMed  CAS  Google Scholar 

  • Kaissling K-E (2004) Physiology of pheromone reception in insects (an example of moths). ANIR 6:73–91

    Google Scholar 

  • Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26:1899–1900

    Article  PubMed  CAS  Google Scholar 

  • Kaupp UB (2010) Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 11:188–200

    PubMed  CAS  Google Scholar 

  • Keil TA (1989) Fine structure of the pheromone-sensitive sensilla on the antenna of the hawkmoth, Manduca sexta. Tissue Cell 21:139–151

    Article  PubMed  CAS  Google Scholar 

  • Keil TA, Steinbrecht RA (1984) Mechanosensitive and olfactory sensilla of insects. In: King RC, Akai H (eds) Insect ultrastructure. Plenum, New York, pp 477–516

    Chapter  Google Scholar 

  • Kostal L, Lansky P, Rospars JP (2008) Efficient olfactory coding in the pheromone receptor neuron of a moth. PLoS Comput Biol 4:e1000053

    Article  PubMed  Google Scholar 

  • Kramer E (1986) Turbulent diffusion and pheromone triggered anemotaxis. In: Payne TL, Birch MC, Kennedy CEJ (eds) Mechanisms in insect olfaction. Clarendon, Oxford, pp 58–67

    Google Scholar 

  • Krizaj D, Demarco SJ, Johnson J, Strehler EE, Copenhagen DR (2002) Cell-specific expression of plasma membrane calcium ATPase isoforms in retinal neurons. J Comp Neurol 451:1–21

    Article  PubMed  CAS  Google Scholar 

  • Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43:703–714

    Article  PubMed  CAS  Google Scholar 

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320

    Article  PubMed  CAS  Google Scholar 

  • Legeai F, Malpel S, Montagne N, Monsempes C, Cousserans F, Merlin C, Francois MC, Maibeche-Coisne M, Gavory F, Poulain J, Jacquin-Joly E (2011) An expressed sequence tag collection from the male antennae of the noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research. BMC Genom 12:86

    Article  CAS  Google Scholar 

  • Ljungberg H, Anderson P, Hansson BS (1993) Physiology and morphology of pheromone-specific sensilla on the antennae of male and female Spodoptera littoralis (Lepidoptera: Noctuidae). J Insect Physiol 39:253–260

    Article  CAS  Google Scholar 

  • Lnenicka GA, Grizzaffi J, Lee B, Rumpal N (2006) Ca2+ dynamics along identified synaptic terminals in Drosophila larvae. J Neurosci 26:12283–12293

    Article  PubMed  CAS  Google Scholar 

  • Lucas P, Nagnan-Le Meillour P (1997) Primary culture of antennal cells of Mamestra brassicae: morphology of cell types and evidence for biosynthesis of pheromone-binding proteins in vitro. Cell Tissue Res 289:375–382

    Article  PubMed  CAS  Google Scholar 

  • Lucas P, Shimahara T (2002) Voltage- and calcium-activated currents in cultured olfactory receptor neurons of male Mamestra brassicae (Lepidoptera). Chem Senses 27:599–610

    Article  PubMed  CAS  Google Scholar 

  • Marion-Poll F, Tobin TR (1992) Temporal coding of pheromone pulses and trains in Manduca sexta. J Comp Physiol 171:505–512

    Article  CAS  Google Scholar 

  • Mayer U, Ungerer N, Klimmeck D, Warnken U, Schnolzer M, Frings S, Mohrlen F (2008) Proteomic analysis of a membrane preparation from rat olfactory sensory cilia. Chem Senses 33:145–162

    Article  PubMed  CAS  Google Scholar 

  • Menco BP (1984) Ciliated and microvillous structures of rat olfactory and nasal respiratory epithelia. A study using ultra-rapid cryo-fixation followed by freeze-substitution or freeze-etching. Cell Tissue Res 235:225–241

    Article  PubMed  CAS  Google Scholar 

  • Penniston JT, Enyedi A (1998) Modulation of the plasma membrane Ca2+ pump. J Membr Biol 165:101–109

    Article  PubMed  CAS  Google Scholar 

  • Pézier A, Acquistapace A, Renou M, Rospars J-P, Lucas P (2007) Ca2+ stabilizes the membrane potential of moth olfactory receptor neurons at rest and is essential for their fast repolarization. Chem Senses 32:305–317

    Article  PubMed  Google Scholar 

  • Pézier A, Grauso M, Acquistapace A, Monsempes C, Rospars J-P, Lucas P (2010) Calcium activates a chloride conductance likely involved in olfactory receptor neuron repolarisation in the moth Spodoptera littoralis. J Neurosci 30:6323–6333

    Article  PubMed  Google Scholar 

  • Pophof B (1997) Olfactory responses recorded from sensilla coeloconica of the silkmoth Bombyx mori. Physiol Entomol 22:239–248

    Article  Google Scholar 

  • Pottorf WJ, Thayer SA (2002) Transient rise in intracellular calcium produces a long-lasting increase in plasma membrane calcium pump activity in rat sensory neurons. J Neurochem 83:1002–1008

    Article  PubMed  CAS  Google Scholar 

  • Quero C, Lucas P, Renou M, Guerrero A (1996) Behavioral responses of Spodoptera littoralis males to sex pheromone components and virgin females in wind tunnel. J Chem Ecol 22:1087–1102

    Article  CAS  Google Scholar 

  • Reisert J, Matthews HR (1998) Na+-dependent Ca2+ extrusion governs response recovery in frog olfactory receptor cells. J Gen Physiol 112:529–535

    Article  PubMed  CAS  Google Scholar 

  • Rogers ME, Steinbrecht RA, Vogt RG (2001) Expression of SNMP-1 in olfactory neurons and sensilla of male and female antennae of the silkmoth Antheraea polyphemus. Cell Tissue Res 303:433–446

    Article  PubMed  CAS  Google Scholar 

  • Rumbo ER, Kaissling K-E (1989) Temporal resolution of odour pulses by three types of pheromone receptor cells in Antheraea polyphemus. J Comp Physiol A 165:281–291

    Article  Google Scholar 

  • Saidu SP, Weeraratne SD, Valentine M, Delay R, Van Houten JL (2009) Role of plasma membrane calcium ATPases in calcium clearance from olfactory sensory neurons. Chem Senses 34:349–358

    Article  PubMed  CAS  Google Scholar 

  • Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, Nishioka T (2004) Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc Natl Acad Sci USA 101:16653–16658

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006

    Article  PubMed  CAS  Google Scholar 

  • Shields VD, Hildebrand JG (2001) Recent advances in insect olfaction, specifically regarding the morphology and sensory physiology of antennal sensilla of the female sphinx moth Manduca sexta. Microsc Res Tech 55:307–329

    Article  PubMed  CAS  Google Scholar 

  • Simon P (2003) Q-Gene: processing quantitative real-time RT-PCR data. Bioinformatics 19:1439–1440

    Article  PubMed  CAS  Google Scholar 

  • Smart R, Kiely A, Beale M, Vargas E, Carraher C, Kralicek AV, Christie DL, Chen C, Newcomb RD, Warr CG (2008) Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol 38:770–780

    Article  PubMed  CAS  Google Scholar 

  • Stengl M (1994) Inositol-triphosphate-dependent calcium currents precede cation currents in insect olfactory receptor neurons in vitro. J Comp Physiol A 174:187–194

    Article  PubMed  CAS  Google Scholar 

  • Stengl M (2010) Pheromone transduction in moths. Front Cell Neurosci 4:1–15

    Article  Google Scholar 

  • Stephan AB, Tobochnik S, Dibattista M, Wall CM, Reisert J, Zhao H (2012) The Na+/Ca2+ exchanger NCKX4 governs termination and adaptation of the mammalian olfactory response. Nat Neurosci 15:131–137

    Article  CAS  Google Scholar 

  • Street VA, McKee-Johnson JW, Fonseca RC, Tempel BL, Noben-Trauth K (1998) Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet 19:390–394

    Article  PubMed  CAS  Google Scholar 

  • Strehler EE, Zacharias DA (2001) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev 81:21–50

    PubMed  CAS  Google Scholar 

  • Strehler EE, Filoteo AG, Penniston JT, Caride AJ (2007) Plasma-membrane Ca2+ pumps: structural diversity as the basis for functional versatility. Biochem Soc Trans 35:919–922

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse RM, Zdobnov EM, Tegenfeldt F, Li J, Kriventseva EV (2011) OrthoDB: the hierarchical catalog of eukaryotic orthologs in 2011. Nucleic Acids Res 39:D283–D288

    Article  PubMed  Google Scholar 

  • Weeraratne SD, Valentine M, Cusick M, Delay R, Van Houten JL (2006) Plasma membrane calcium pumps in mouse olfactory sensory neurons. Chem Senses 31:725–730

    Article  PubMed  CAS  Google Scholar 

  • Wegener JW, Tareilus E, Breer H (1992) Characterization of calcium-dependent potassium channels in antennal receptor neurones of Locusta migratoria. J Insect Physiol 38:237–248

    Article  CAS  Google Scholar 

  • Wicher D, Schafer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007–1011

    Article  PubMed  CAS  Google Scholar 

  • Zenisek D, Matthews G (2000) The role of mitochondria in presynaptic calcium handling at a ribbon synapse. Neuron 25:229–237

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Maida R, Steinbrecht RA (2001) Immunolocalization of odorant-binding proteins in noctuid moths (Insecta, Lepidoptera). Chem Senses 26:885–896

    Article  PubMed  CAS  Google Scholar 

  • Zufall F, Stengl M, Franke C, Hildebrand JG, Hatt H (1991) Ionic currents of cultured olfactory receptor neurons from antennae of male Manduca sexta. J Neurosci 11:956–965

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Debernard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Primer sequences. List of primers used for 5′/3′ rapid amplification of cDNA ends (RACE) with the polymerase chain reaction (PCR), reverse transcription with PCR (RT-PCR) and quantitative PCR (qPCR) analyses. (JPEG 57 kb)

High resolution image (TIFF 5915 kb)

Table S2

Accession numbers of amino acid sequences of plasma membrane Ca2+ ATPase (PMCA)(JPEG 115 kb)

High resolution image (TIFF 16907 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

François, A., Bozzolan, F., Demondion, E. et al. Characterization of a plasma membrane Ca2+ ATPase expressed in olfactory receptor neurons of the moth Spodoptera littoralis . Cell Tissue Res 350, 239–250 (2012). https://doi.org/10.1007/s00441-012-1483-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1483-8

Keywords

Navigation