Skip to main content

Advertisement

Log in

Development of astroglia heterogeneously expressing Pax2, vimentin and GFAP during the ontogeny of the optic pathway of the lizard (Gallotia galloti): an immunohistochemical and ultrastructural study

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The successful regrowth of retinal ganglion cell (RGC) axons after optic nerve (ON) axotomy in Gallotia galloti indicates a permissive role of the glial environment. We have characterised the astroglial lineage of the lizard optic pathway throughout its ontogeny (embryonic stage 30 [E30] to adults) by using electron microscopy and immunohistochemistry to detect the proliferation marker PCNA (proliferating cell nuclear antigen), the transcription factor Pax2 and the gliofilament proteins vimentin (Vim) and GFAP (glial fibrillary acidic protein). PCNA+ cells were abundant until E39, with GFAP+/PCNA+ astrocytes being observed between E37 and hatching. Proliferation diminished markedly afterwards, being undetectable in the adult optic pathway. Müller glia of the central retina expressed Pax2 from E37 and their endfeet accumulated Vim from E33 and GFAP from E37 onwards. Astrocytes were absent in the avascular lizard retina, whereas abundant Pax2+ astrocytes were observed in the ON from E30. A major subpopulation of these astrocytes coexpressed Vim from E35 and also GFAP from E37 onwards; thus the majority of mature astrocytes coexpressed Pax2/Vim/GFAP. The astrocytes were ultrastructurally identified by their gliofilaments, microtubules, dense bodies, desmosomes and glycogen granules, which preferentially accumulated in cell processes. Astrocytes in the adult ON coexpressed both gliofilaments and presented desmosomes indicating a reinforcement of the ON structure; this is physiologically necessary for local adaptation to mechanical forces linked to eye movement. We suggest that astrocytes forming this structural scaffold facilitate the regrowth of RGCs after ON transection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CN:

Caudal optic nerve

CPONJ:

Conus papillaris-optic nerve junction

CR:

Central retina

GFAP:

Glial fibrillary acidic protein

INL:

Inner nuclear layer

MN:

Mid optic nerve

OCh:

Optic chiasm

ON:

Optic nerve

ONH:

Optic nerve head

OTr:

Optic tract

PCNA:

Proliferating cell nuclear antigen

PR:

Peripheral retina

RGC:

Retinal ganglion cell

RONJ:

Retina-optic nerve junction

Vim:

Vimentin

References

  • Alfayate MC, Santos E, Yanes C, Casañas N, Viñoly R, Romero-Alemán MM, Monzón-Mayor M (2011) Ontogeny of the conus papillaris of the lizard G. galloti and cellular response following transection of the optic nerve. Immunohistochemical and ultrastructural study. Cell Tissue Res 344:63–83

    Article  CAS  Google Scholar 

  • Alvarez-Bolado G, Schwarz M, Gruss P (1997) Pax-2 in the chiasm. Cell Tissue Res 290:197–200

    Article  PubMed  CAS  Google Scholar 

  • Bixby JL, Harris WA (1991) Molecular mechanisms of axon growth and guidance. Annu Rev Cell Biol 7:117–159

    Article  PubMed  CAS  Google Scholar 

  • Bodega G, Suarez I, Rubio M, Fernandez B (1995) Type II cytokeratin expression in adult vertebrate spinal cord. Tissue Cell 27:555–559

    Article  PubMed  CAS  Google Scholar 

  • Boije H, Ring H, López-Gallardo M, Prada C, Hallböök F (2010) Pax2 is expressed in a subpopulation of Müller cells in the central chick retina. Dev Dyn 239:1858–1866

    Article  PubMed  CAS  Google Scholar 

  • Brodkey JA, Gates MA, Laywell ED, Steindler DA (1993) The complex nature of interactive neuroregeneration-related molecules. Exp Neurol 123:251–270

    Article  PubMed  CAS  Google Scholar 

  • Calvo JL, Carbonell AL, Boya J (1990) Coexpression of vimentin and glial fibrillary acidic protein in astrocytes of the adult rat optic nerve. Brain Res 532:355–357

    Article  PubMed  CAS  Google Scholar 

  • Chan-Ling T, Stone J (1991) Factors determining the morphology and distribution of astrocytes in the cat retina: a contact-spacing model of astrocyte interaction. J Comp Neurol 303:387–399

    Article  Google Scholar 

  • Chu Y, Hughes S, Chan-Ling T (2001) Differentiation and migration of astrocyte precursor cells and astrocytes in human fetal retina: relevance to optic nerve coloboma. FASEB J 15:2013–2015

    PubMed  CAS  Google Scholar 

  • Cohen I, Sivron T, Lavie V, Blaugrund E, Schwartz M (1994) Vimentin immunoreactive glial cells in the fish optic nerve: implications for regeneration. Glia 10:16–29

    Article  PubMed  CAS  Google Scholar 

  • Dahl D, Rueger DC, Bignami A, Weber K, Osborn M (1981) Vimentin, the 57 000 molecular weight protein of fibroblast filaments, is the major cytoskeletal component in immature glia. Eur J Cell Biol 24:191–196

    PubMed  CAS  Google Scholar 

  • Dakubo GD, Beug ST, Mazerolle CJ, Thurig S, Wang Y, Wallace VA (2008) Control of glial precursor cell development in the mouse optic nerve by sonic hedgehog from retinal ganglion cells. Brain Res 1228:27–42

    Article  PubMed  CAS  Google Scholar 

  • Dávila JC, Guirado S, De La Calle A, Marín-Girón F (1987) The intra-ocular portion of the turtle Mauremys caspica. J Anat 151:189–198

    PubMed  Google Scholar 

  • De Guevara R, Pairault C, Pinganaud G (1994) Expression of vimentin and GFAP and development of the retina in the trout. C R Acad Sci III 317:737–741

    PubMed  CAS  Google Scholar 

  • Doh ST, Hao H, Loh SC, Patel T, Tawil HY, Chen DK, Pashkova A, Shen A, Wang H, Cai L (2010) Analysis of retinal cell development in chick embryo by immunohistochemistry and in ovo electroporation techniques. BMC Dev Biol 10:8–24

    Article  PubMed  Google Scholar 

  • Dufaure JP, Hubert J (1961) Table de dévelopment du lizard viviparae (Lacerta vivipara jacquin). Arch Anat Microsc Morphol Exp 50:309–327

    Google Scholar 

  • Dunlop SA, Tee LB, Stirling RV, Taylor AL, Runham PB, Barber AB, Kuchling G, Rodger J, Roberts JD, Harvey AR, Beazley LD (2004) Failure to restore vision after optic nerve regeneration in reptiles: interspecies variation in response to axotomy. J Comp Neurol 478:292–305

    Article  PubMed  Google Scholar 

  • Fischer AJ, Zelinka C, Scott MA (2010) Heterogeneity of glia in the retina and optic nerve of birds and mammals. PLoS ONE 5:e10774

    Article  PubMed  Google Scholar 

  • Fujita Y, Imagawa T, Uehara M (2001) Fine structure of the retino-optic nerve junction in the chicken. Tissue Cell 33:129–134

    Article  PubMed  CAS  Google Scholar 

  • Galou M, Colucci-Guyon E, Ensergueix D, Ridet JL, Gimenez y Rivotta M, Privat A, Babinet C, Dupouey P (1996) Disrupted glial fibrillary acidic protein network in astrocytes from vimentin knockout mice. J Cell Biol 133:853–863

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt H, Schuck J, Wolburg H (1999) Differentiation of a unique macroglial cell type in the pecten oculi of the chicken. Glia 28:201–214

    Article  PubMed  CAS  Google Scholar 

  • Hirata A, Kitaoka T, Isihigooka H, Ueno S (1991) Cytochemical studies of transitional area between retina and optic nerve. Acta Ophthalmol (Copenh) 69:71–75

    Article  CAS  Google Scholar 

  • Holen T (2011) The ultrastructure of lamellar stack astrocytes. Glia 59:1075–1083

    Article  PubMed  Google Scholar 

  • Jadhav AP, Roesch K, Cepko CL (2009) Development and neurogenic potential of Muller glial cells in the vertebrate retina. Prog Retin Eye Res 28:249–262

    Article  PubMed  CAS  Google Scholar 

  • Jeffery G (2001) Architecture of the optic chiasm and the mechanisms that sculpt its development. Physiol Rev 81:1393–1414

    PubMed  CAS  Google Scholar 

  • Jeffery G, Levitt JB, Cooper HM (2008) Segregated hemispheric pathways through the optic chiasm distinguish primates from rodents. Neuroscience 157:637–643

    Article  PubMed  CAS  Google Scholar 

  • Jonas JB, Mardin CY, Schlotzer-Schrehardt U, Naumann GO (1991) Morphometry of the human lamina cribrosa surface. Invest Ophthalmol Vis Sci 32:401–405

    PubMed  CAS  Google Scholar 

  • Kálmán M, Székely AD, Csillag A (1998) Distribution of glial fibrillary acidic protein and vimentin-immunopositive elements in the developing chicken brain from hatch to adulthood. Anat Embryol (Berl) 198:213–235

    Article  Google Scholar 

  • Kimelberg HK (2010) Functions of mature mammalian astrocytes: a current view. Neuroscientist 16:79–106

    Article  PubMed  CAS  Google Scholar 

  • Kreft M, Potokar M, Stenovec M, Pangrsic T, Zorec R (2009) Regulated exocytosis and vesicle trafficking in astrocytes. Ann N Y Acad Sci 1152:30–42

    Article  PubMed  CAS  Google Scholar 

  • Lang DM, Monzón-Mayor M, Bandtlow CE, Stuermer CAO (1998) Retinal axon regeneration in the lizard Gallotia galloti in the presence of CNS myelin and oligodendrocytes. Glia 23:61–74

    Article  PubMed  CAS  Google Scholar 

  • Lang DM, Romero-Alemán MM, Arbelo-Galván JF, Stuermer CA, Monzón-Mayor M (2002) Regeneration of retinal axons in the lizard Gallotia galloti is not linked to generation of new retinal ganglion cells. J Neurobiol 52:322–335

    Article  PubMed  Google Scholar 

  • Lang DM, Monzón-Mayor M, Romero-Alemán MM, Yanes C, Santos E, Pesheva P (2008) Tenascin-R and axon growth-promoting molecules are up-regulated in the regenerating visual pathway of the lizard (Gallotia galloti). Dev Neurobiol 68:899–916

    Article  PubMed  CAS  Google Scholar 

  • Lara JM, Velasco A, Lillo C, Jimeno D, Aijon J (1998) Characterization of the glial cells in the teleost visual pathway. In: Bernardo-Castellano (ed) Understanding glial cells. Kluwer Academic, Dordrecht, pp 3–18

    Chapter  Google Scholar 

  • Lepekhin EA, Eliasson C, Berthold CH, Berezin V, Bock E, Pekny M (2001) Intermediate filaments regulate astrocyte motility. J Neurochem 79:617–625

    Article  PubMed  CAS  Google Scholar 

  • Levine RL (1989) Organization of astrocytes in the visual pathways of the goldfish: an immunohistochemical study. J Comp Neurol 285:231–245

    Article  PubMed  CAS  Google Scholar 

  • Levine RL (1993) Axon dependent glial changes during optic fiber regeneration in the goldfish. J Comp Neurol 333:543–553

    Article  PubMed  CAS  Google Scholar 

  • Lewis GP, Matsumoto B, Fisher SK (1995) Changes in the organization and expression of cytoskeletal proteins during retinal degeneration induced by retinal detachment. Invest Ophthalmol Vis Sci 36:2404–2416

    PubMed  CAS  Google Scholar 

  • Lillo C, Velasco A, Jimeno D, Cid E, Lara JM, Aijon J (2002) The glial design of a teleost optic nerve head supporting continuous growth. J Histochem Cytochem 50:1289–1302

    Article  PubMed  CAS  Google Scholar 

  • Lundkvist A, Reichenbach A, Betsholtz C, Carmeliet P, Wolburg H, Pekny M (2004) Under stress, the absence of intermediate filaments from Muller cells in the retina has structural and functional consequences. J Cell Sci 117:3481–3488

    Article  PubMed  CAS  Google Scholar 

  • Macdonald R, Scholes J, Strähle U, Brennan C, Holder N, Brand M, Wilson SW (1997) The Pax protein Noi is required for commissural axon pathway formation in the rostral forebrain. Development 124:2397–2408

    PubMed  CAS  Google Scholar 

  • Maggs A, Scholes J (1986) Glial domains and nerve fiber patterns in the fish retinotectal pathway. J Neurosci 6:424–438

    PubMed  CAS  Google Scholar 

  • Maggs A, Scholes J (1990) Reticular astrocytes in the fish optic nerve: macroglia with epithelial characteristics form an axially repeated lacework pattern, to which nodes of Ranvier are apposed. J Neurosci 10:1600–1614

    PubMed  CAS  Google Scholar 

  • Menet V, Prieto M, Privat A, Giménez-Ribotta M (2003) Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Proc Natl Acad Sci USA 100:8999–9004

    Article  PubMed  CAS  Google Scholar 

  • Miller RH, Ffrench-Constant C, Raff MC (1989a) The macroglial cells of the rat optic nerve. Annu Rev Neurosci 12:517–534

    Article  PubMed  CAS  Google Scholar 

  • Miller RH, Fulton BP, Raff MC (1989b) A novel type of glial cell associated with nodes of Ranvier in rat optic nerve. Eur J Neurosci 1:172–180

    Article  PubMed  Google Scholar 

  • Mitashov VI (2001) Multipotent and stem cells in the developing, definitive, and regenerating vertebrate eye. Izv Akad Nauk Ser Biol 6:717–727

    PubMed  Google Scholar 

  • Monzón-Mayor M, Yanes C, Ghandour MS, De Barry J, Gombos G (1990a) Glial fibrillary acidic protein and vimentin immunohistochemistry in the developing and adult midbrain of the lizard Gallotia galloti. J Comp Neurol 295:569–579

    Article  PubMed  Google Scholar 

  • Monzón-Mayor M, Yanes C, James JG, Sturrock RR (1990b) An ultrastructural study of the development of astrocytes in the midbrain of the lizard. J Anat 170:33–41

    PubMed  Google Scholar 

  • Monzón-Mayor M, Yanes C, Tholey G, De Barry J, Gombos G (1990c) Immunohistochemical localization of glutamine synthetase in mesencephalon and telencephalon of the lizard Gallotia galloti during ontogeny. Glia 3:81–97

    Article  PubMed  Google Scholar 

  • Monzón-Mayor M, Yanes-Méndez C, De Barry J, Capdevilla-Carbonell C, Renau-Piqueras J, Tholey G, Gombos G (1998) Heterogeneous immunoreactivity of glial cells in the mesencephalon of a lizard: a double labeling immunohistochemical study. J Morphol 235:109–119

    Article  PubMed  Google Scholar 

  • Morcos Y, Chan-Ling T (2000) Concentration of astrocytic filaments at the retinal optic nerve junction is coincident with the absence of intra-retinal myelination: comparative and developmental evidence. J Neurocytol 29:665–678

    Article  PubMed  CAS  Google Scholar 

  • Onteniente B, Kimura H, Maeda T (1983) Comparative study of the glial fibrillary acidic protein in vertebrates by PAP immunohistochemistry. J Comp Neurol 215:427–436

    Article  PubMed  CAS  Google Scholar 

  • Oyama T, Abe H, Ushiki T (2006) The connective tissue and glial framework in the optic nerve head of the normal human eye: light and scanning electron microscopic studies. Arch Histol Cytol 69:341–356

    Article  PubMed  Google Scholar 

  • Parrilla M, Lillo C, Herrero-Turrion MJ, Arévalo R, Lara JM, Aijón J, Velasco A (2009) Pax2 in the optic nerve of the goldfish, a model of continuous growth. Brain Res 1255:75–88

    Article  PubMed  CAS  Google Scholar 

  • Pereira A Jr, Furlan FA (2010) Astrocytes and human cognition: modelling information integration and modulation of neuronal activity. Prog Neurobiol 92:405–420

    Article  PubMed  Google Scholar 

  • Potokar M, Kreft M, Li L, Daniel Andersson J, Pangrsic T, Chowdhury HH, Pekny M, Zorec R (2007) Cytoskeleton and vesicle mobility in astrocytes. Traffic 8:12–20

    Article  PubMed  CAS  Google Scholar 

  • Prada FA, Espinar A, Chmielewski CE, Dorado ME, Genis-Gálvez JM (1989) Regional adaptation of Muller cells in the chick retina. A Golgi and electron microscopical study. Histol Histopathol 4:309–315

    PubMed  CAS  Google Scholar 

  • Quesada A, Prada FA, Aguilera Y, Espinar A, Carmona A, Prada C (2004) Peripapillary glial cells in the chick retina: a special glial cell type expressing astrocyte, radial glia, neuron, and oligodendrocyte markers throughout development. Glia 46:346–355

    Article  PubMed  Google Scholar 

  • Quitschke W, Schechter N (1986) Homology and diversity between intermediate filament proteins of neuronal and nonneuronal origin in goldfish optic nerve. J Neurochem 46:545–555

    Article  PubMed  CAS  Google Scholar 

  • Raff MC (1989) Glial cell diversification in the rat optic nerve. Science 243:1450–1455

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Steffens A (1980) Tabla del desarrollo embrionario de la lacerta Gallotia galloti (período de organogénesis), y aspectos de su reproducción. Minor thesis, Facultad de Biología, Universidad de La Laguna, España

  • Reese BE, Maynard TM, Hocking DR (1994) Glial domains and axonal reordering in the chiasmatic region of the developing ferret. J Comp Neurol 349:303–324

    Article  PubMed  CAS  Google Scholar 

  • Romero-Alemán MM, Monzón-Mayor M, Yanes C, Arbelo-Galván JF, Lang D, Renau-Piqueras J, Negrín-Martínez C (2003) S100 immunoreactive glial cells in the forebrain and midbrain of the lizard Gallotia galloti during ontogeny. J Neurobiol 57:54–66

    Article  Google Scholar 

  • Romero-Alemán MM, Monzón-Mayor M, Yanes C, Lang D (2004) Radial glial cells, proliferating periventricular cells, and microglia might contribute to successful structural repair in the cerebral cortex of the lizard Gallotia galloti. Exp Neurol 188:74–85

    Article  PubMed  Google Scholar 

  • Romero-Alemán MM, Monzón-Mayor M, Santos E, Yanes C (2010) Expression of neuronal markers, synaptic proteins, and glutamine synthetase in the control and regenerating lizard visual system. J Comp Neurol 518:4067–4087

    Article  PubMed  Google Scholar 

  • Rubin LL, Staddon JM (1999) The cell biology of the blood-brain barrier. Annu Rev Neurosci 22:11–28

    Article  PubMed  CAS  Google Scholar 

  • Rungger-Brändle E, Achtstätter T, Franke WW (1989) An epithelium-type cytoskeleton in a glial cell: astrocytes of amphibian optic nerves contain cytokeratin filaments and are connected by desmosomes. J Cell Biol 109:705–716

    Article  PubMed  Google Scholar 

  • Santos E, Yanes CM, Monzón-Mayor M, del Mar Romero-Alemán M (2006) Peculiar and typical oligodendrocytes are involved in an uneven myelination pattern during the ontogeny of the lizard visual pathway. J Neurobiol 66:1115–1124

    Article  PubMed  CAS  Google Scholar 

  • Santos E, Monzón-Mayor M, Romero-Alemán MM, Yanes C (2008) Distribution of neurotrophin-3 during the ontogeny and regeneration of the lizard (Gallotia galloti) visual system. Dev Neurobiol 68:31–44

    Article  PubMed  CAS  Google Scholar 

  • Sassoè Pognetto M, Panzanelli P, Artero C, Fasolo A, Cantino D (1992) Comparative study of glial fibrillary acidic protein (GFAP) like immunoreactivity in the retina of some representative vertebrates. Eur J Histochem 36:467–477

    PubMed  Google Scholar 

  • Scholes J (1991) The design of the optic nerve in fish. Vis Neurosci 7:129–139

    Article  PubMed  CAS  Google Scholar 

  • Skoff R, Price DL, Stocks SA (1976) Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. II. Time of origin. J Comp Neurol 169:313–334

    Article  PubMed  CAS  Google Scholar 

  • Stanke J, Moose HE, El-Hodiri HM, Fischer AJ (2010) Comparative study of Pax2 expression in glial cells in the retina and optic nerve of birds and mammals. J Comp Neurol 518:2316–2333

    Article  PubMed  CAS  Google Scholar 

  • Stensaas LJ (1977) The ultrastructure of astrocytes, oligodendrocytes, and microglia in the optic nerve of urodele amphibians (A. punctatum, T. pyrrhogaster, T. viridescens). J Neurocytol 6:269–286

    Article  PubMed  CAS  Google Scholar 

  • Sturrock RR (1975) A light and electron microscopic study of proliferation and maduration of fibrous astrocytes in the optic nerve of human embryo. J Anat 119:223–234

    PubMed  CAS  Google Scholar 

  • Suárez I, Raff MC (1989) Subpial and perivascular astrocytes associated with nodes of Ranvier in the rat optic nerve. J Neurocytol 18:577–582

    Article  PubMed  Google Scholar 

  • Tekkök SB, Brown AM, Westenbroek R, Pellerin L, Ransom BR (2005) Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. J Neurosci Res 81:644–652

    Article  PubMed  Google Scholar 

  • Thanos S, Püttmann S, Naskar R, Rose K, Langkamp-Flock M, Paulus W (2004) Potential role of Pax-2 in retinal axon navigation through the chick optic nerve stalk and optic chiasm. J Neurobiol 59:8–23

    Article  PubMed  CAS  Google Scholar 

  • Torres M, Gómez-Pardo E, Gruss P (1996) Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 22:3381–3391

    Google Scholar 

  • Triviño A, Ramírez JM, Salazar JJ, Ramírez AI, García-Sánchez J (1996) Immunohistochemical study of human optic nerve head astroglia. Vision Res 36:2015–2028

    Article  PubMed  Google Scholar 

  • Vaughn JE (1969) An electron microscopic analysis of gliogenesis in rat optic nerve. Z Zell Mikrosk Anat 94:293–327

    Article  CAS  Google Scholar 

  • Williams SE, Mann F, Erskine L, Sakurai T, Wei S, Rossi DJ, Gale NW, Holt CE, Mason CA, Henkemeyer M (2003) Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm. Neuron 39:919–935

    Article  PubMed  CAS  Google Scholar 

  • Wolburg H, Bäuerle C (1993) Astrocytes in the lamina cribrosa of the rat optic nerve: are their morphological peculiarities involved in an altered blood-brain barrier? J Hirnforsch 34:445–459

    PubMed  CAS  Google Scholar 

  • Won MH, Kang TC, Cho SS (2000) Glial cells in the bird retina: immunochemical detection. Microsc Res Tech 50:151–160

    Article  PubMed  CAS  Google Scholar 

  • Yanes C, Monzón-Mayor M, Ghandour MS, De Barry J, Gombos G (1990) Radial glia and astrocytes in developing and adult telencephalon of the lizard Gallotia galloti as revealed by immunohistochemistry with anti-GFAP and anti-Vimentin antibodies. J Comp Neurol 295:559–568

    Article  PubMed  CAS  Google Scholar 

  • Ye H, Hernández MR (1995) Heterogeneity of astrocytes in human optic nerve head. J Comp Neurol 362:441–452

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The technical assistance of the Electron Microscopy Services of the University of La Laguna (ULL) and the University of Las Palmas de Gran Canaria (ULPGC) are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Santos.

Additional information

This work was supported by the Spanish Ministry of Education (Research Project BFU2007-67139) and the Regional Canary Islands Government (ACIISI, Research Project SolSubC200801000281; Project ULPAPD-08/01-4).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Panoramic views of the retina (a, b) and optic nerve-optic tract (ON-OTr; c, d) of adult (Ad) lizards immunolabelled for vimentin (Vim) and glial fibrillary acidic protein (GFAP). a, b Immunofluorescence labelling for Vim (a) and immunoperoxidase staining for GFAP (b) in the retina. Müller glia endfeet are weakly Vim+ in the central (CR) compared with the peripheral retina (PR), whereas they show homogeneous GFAP labelling along the entire retina (l lens). c, d Immunoperoxidase staining for Vim (c) and GFAP (d) in the ON-OTr. Note intense Vim staining in the caudal nerve (CN) and strong GFAP staining in the midnerve (MN). Bars 250 μm (JPEG 90 kb)

High resolution image (TIFF 19756 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casañas, M.N., Santos, E., Yanes, C. et al. Development of astroglia heterogeneously expressing Pax2, vimentin and GFAP during the ontogeny of the optic pathway of the lizard (Gallotia galloti): an immunohistochemical and ultrastructural study. Cell Tissue Res 345, 295–311 (2011). https://doi.org/10.1007/s00441-011-1211-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1211-9

Keywords

Navigation