Skip to main content

Advertisement

Log in

Cellular morphology and markers of cartilage and bone in the marine teleost Sparus auratus

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Modifications have been characterised in terms of cellular organisation and the extracellular matrix (ECM) during bone ontogeny in the sea bream (Sparus auratus). During endochondral development, the agglomeration of matrix-secreting cells gives rise to chondrones; these chondrones frequently contain proliferating-cell-nuclear-antigen-positive cells, which subsequently become large collagen-II-positive cells with the characteristics of chondrocytes. Moreover, the matrix:cell ratio within the perichondrium increases, accompanied by a modification in ECM composition. Mineralisation of cartilage ECM is marked by a rapid fall in cell number, the switching off of collagen II transcription and the switching on of collagen X transcription, followed by collagen I transcription and bone mineralisation. The formation of dermal structures initiated upon the condensation of mesenchyme cells defines the future location of the dermal bone. Subsequent cellular differentiation gives rise to cells on the bone surface; these cells are positive for collagen I and osteonectin transcripts. The fish skeleton, with the exception of vertebrae, tends to comprise flattened bones that are covered by a monolayer of cells, the periosteum. A third type of tissue, present in gills, consists of chondrocyte-like cells embedded in a mineralised matrix resembling chondroid bone in mammals. The results suggest that the cellular organisation and ontogeny of endochondral and dermal bone in the sea bream are similar to those described in other vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams JC, Watt FM (1993) Regulation of development and differentiation by the extracellular matrix. Development 117:1183–1198

    PubMed  CAS  Google Scholar 

  • Avaron F, Hoffman L, Guay D, Akimenko MA (2006) Characterization of two new zebrafish members of the hedgehog family: atypical expression of a zebrafish Indian hedgehog gene in skeletal elements of both endochondral and dermal origins. Dev Dyn 235:478–489

    Article  PubMed  CAS  Google Scholar 

  • Bayliss PE, Bellavance KL, Whitehead GG, Abrams JM, Aegerter S, Robbins HS, Cowan DB, Keating MT, O’Reilly T, Wood JM, Roberts TM, Chan J (2006) Chemical modulation of receptor signaling inhibits regenerative angiogenesis in adult zebrafish. Nat Chem Biol 2:265–273

    Article  PubMed  CAS  Google Scholar 

  • Behonick DJ, Werb Z (2003) A bit of give and take: the relationship between the extracellular matrix and the developing chondrocyte. Mech Dev 120:1327–1336

    Article  PubMed  CAS  Google Scholar 

  • Benjamin M, Ralphs JR, Eberewariye OS (1992) Cartilage and related tissues in the trunk and fins of teleosts. J Anat 181:113–118

    PubMed  Google Scholar 

  • Bird NC, Mabee PM (2003) Development morphology of the axial skeleton of the zebra fish, Danio rerio (Ostariophysi:Cyprinidae). Dev Dyn 228:337–357

    Article  PubMed  Google Scholar 

  • Brittijn SA, Duivesteijn SJ, Belmamoune M, Bertens LFM, Bitter W, De Bruijn JD, Champagne DL, Cuppen E, Flik G, Vanderbroucke-Grauls CM, Janssen RAJ, De Jong IML, De Kloet ER, Kros A, Meijer AH, Metz JR, Van Der Sar AM, Schaaf JM, Schulte-Merker S, Spaink HP, Tak PP, Verbeek FJ, Vervoordeldonk MJ, Vomk FJ, Witte F, Yuan H, Richardson MK (2009) Zebrafish development and regeneration: new tools for biomedical research. Int J Dev Biol 53:835–850

    Article  PubMed  CAS  Google Scholar 

  • Bruneau S, Mourrain P, Rosa FM (1997) Expression of contact, a new zebrafish DVR member, marks mesenchymal cell lineages in the developing pectoral fins and head and is regulated by retinoic acid. Mech Dev 65:163–173

    Article  PubMed  CAS  Google Scholar 

  • Campinho MA, Moutou KA, Power DM (2004) Temperature sensitivity of skeletal ontogeny in Oreochromis mossambicus. J Fish Biol 65:1003–1025

    Article  Google Scholar 

  • Compston JE (2001) Sex steroids and bone. Physiol Rev 81:419–447

    PubMed  CAS  Google Scholar 

  • Downey PA, Siegel MI (2006) Bone biology and the clinical implications for osteoporosis. Phys Ther 86:177–191

    Google Scholar 

  • Du SJ, Frenkel V, Kindschi G, Zohar Y (2001) Visualizing normal and defective bone development in zebrafish embryos using the fluorescent chromophore calcein. Dev Biol 238:239–246

    Article  PubMed  CAS  Google Scholar 

  • Ekanayake S, Hall BK (1987) The development of acellularity of the vertebral bone of the Japanese medaka, Oryzias latipes (Teleostei; Cyprinidontidae). J Morphol 193:253–261

    Article  PubMed  CAS  Google Scholar 

  • Ekanayake S, Hall BK (1988) Ultrastructure of the osteogenesis of acellular vertebral bone in the Japanese medaka, Oryzias latipes (Teleostei, Cyprinidontidae). Am J Anat 182:241–249

    Article  PubMed  CAS  Google Scholar 

  • Estêvão MD, Redruello B, Canario AVM, Power DM (2005) Ontogeny of osteonectin expression in embryos and larvae of sea bream (Sparus auratus). Gen Comp Endocrinol 142:155–162

    Article  PubMed  Google Scholar 

  • Faustino M, Power DM (1998) Developmental of osteological structures in the sea bream: vertebral column and caudal fin complex. J Fish Biol 52:11–22

    Article  Google Scholar 

  • Fiujita K (1992) Skeleton of the caudal skeleton in the tetraodontid fish, Takifugu niphobles. Jpn J Ichthyol 38:438–440

    Google Scholar 

  • Gavaia PJ, Simes DC, Ortiz-Delgado JB, Viegas CSB, Pinto JP, Kelsh RN, Sarasquete MC, Cancela ML (2006) Osteocalcin and matrix Gla protein in zebrafish (Danio rerio) and Senegal sole (Solea senegalensis): comparative gene and protein expression during larval development through adulthood. Gene Expr Patterns 6:637–652

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson E, Fassler R (2000) Insights into extracellular matrix functions from mutant mouse models. Exp Cell Res 261:52–68

    Article  PubMed  CAS  Google Scholar 

  • Hall BK (2005) Bones and cartilage: development and evolutionary skeletal biology. Elsevier Academic, London

    Google Scholar 

  • Hall BK, Witten PE (2007) Plasticity of and transitions between skeletal tissues in vertebrate evolution and development. In: Anderson JS, Sues H-D (eds) Major transitions in vertebrate evolution. Indiana University Press, Bloomington, pp 13–56

    Google Scholar 

  • Hammond CL, Schulte-Merker S (2009) Two populations of endochondral osteoblasts with differential sensitivity to Hedgehog signalling. Development 136:3991–4000

    Article  PubMed  CAS  Google Scholar 

  • Hemre G-I, Dengb D-F, Wilsonb RP, Berntssena MHG (2004) Vitamin A metabolism and early biological responses in juvenile sunshine bass (Morone chrysops × M. saxatilis) fed graded levels of vitamin A. Aquaculture 235:645–658

    Article  CAS  Google Scholar 

  • Hillier ML, Bell LS (2007) Differentiating human bone from animal bone: a review of histological methods. J Forensic Sci 52:249–263

    Article  PubMed  Google Scholar 

  • Huysseune A, Sire JY (1990) Ultrastructural observations on chondroid bone in the teleost fish Hemichromis bimaculatus. Tissue Cell 22:371–383

    Article  PubMed  CAS  Google Scholar 

  • Inohaya K, Takano Y, Kudo A (2007) The teleost intervertebral region acts as a growth center of the centrum: in vivo visualization of osteoblasts and their progenitors in transgenic fish. Dev Dyn 236:3031–3046

    Article  PubMed  CAS  Google Scholar 

  • Kang JS, Oohashi T, Kawakami Y, Bekku Y, Belmonte JCI, Ninomiya Y (2004) Characterization of dermacan, a novel zebrafish lectican gene, expressed in dermal bones. Mech Dev 121:301–312

    Article  PubMed  CAS  Google Scholar 

  • Kang Y-J, Stevenon AM, Yau PM, Kollmar R (2008) Sparc protein is required for normal growth of zebrafish otoliths. J Assoc Res Otolaryngol 9:436–451

    Article  PubMed  Google Scholar 

  • Kardong KV (1998) Vertebrates—comparative anatomy, function, evolution. McGraw-Hill, Boston

    Google Scholar 

  • Kestin SC, Warriss PD (2001) Farmed fish quality. Fishing News Books, Oxford

    Google Scholar 

  • Kleinman HK, Philp D, Hoffman MP (2003) Role of the extracellular matrix in morphogenesis. Curr Opin Biotechnol 14:526–532

    Article  PubMed  CAS  Google Scholar 

  • Koumoundouros G, Divanach P, Kentouri M (2001a) Osteological development of Dentex dentex (Osteichthyes: Sparidae): dorsal, anal, paired fins and squamation. Mar Biol 138:399–406

    Article  Google Scholar 

  • Koumoundouros G, Sfakianakis DG, Maingot E, Divanach P, Kentouri M (2001b) Osteological development of the vertebral column and of the fins in Diplodus sargus (Teleostei: Perciformes: Sparidae). Mar Biol 139:853–862

    Article  Google Scholar 

  • Kranenbarg S, van Cleynenbreugel T, Schipper H, Leeuwen J van (2005) Adaptive bone formation in acellular vertebrae of sea mass (Dicentrarchus labrax, L.). J Exp Biol 208:3493–3502

    Article  PubMed  Google Scholar 

  • Lehane DB, McKie N, Russell RG, Henderson IW (1999) Cloning of a fragment of the osteonectin gene from goldfish, Carassius auratus: its expression and potential regulation by estrogen. Gen Comp Endocrinol 114:80–87

    Article  PubMed  CAS  Google Scholar 

  • Marí-Beffa M, Santamaría JA, Murciano C, Santos-Ruiz L, Andrades JA, Guerado E, Becerra J (2007) Zebrafish fins as a model system for skeletal human studies. Sci World J 7:1114–1127

    Google Scholar 

  • Marks SC, Odgren PR (2002) Structure and development of the skeleton. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology, vol 1. Academic Press, New York, pp 3-15

    Google Scholar 

  • Meunier FJ, Huysseune A (1992) Tne concept of bone tissue in osteichthyes. Neth J Zool 42:445–458

    Article  Google Scholar 

  • Moss ML (1963) The biology of acellular teleost bone. Ann N Y Acad Sci 109:337–350

    Article  PubMed  CAS  Google Scholar 

  • Mugiya Y, Watabe N (1977) Studies on fish scale formation and resorption. II. Effect of estradiol on calcium homeostasis and skeletal tissue resorption in the goldfish, Carassius auratus, and the killifish, Fundulus heteroclitus. Comp Physiol Biochem 57A:197–202

    Article  Google Scholar 

  • Nakashima K, Crombrugghe B de (2003) Transcriptional mechanisms in osteoblast differentiation and bone formation. Trends Genet 19:458–466

    Article  PubMed  CAS  Google Scholar 

  • Nishimoto SK, Araki N, Robinson FD, Waitell JH (1992) Discovery of bone γ-carboxyglutamic acid protein in mineralized scales. J Biol Chem 267:11600–11605

    PubMed  CAS  Google Scholar 

  • Nordvik K, Kryvi H, Totland GK, Grotmol S (2005) The salmon vertebral body develops through mineralization of two preformed tissues that are encompassed by two layers of bone. J Anat 206:103–114

    Article  PubMed  Google Scholar 

  • Omori M, Sugawara Y, Honda H (1996) Morphogenesis in hatchery-reared larvae of the black rockfish, Sebastes schleeli, and its relationship to the development of swimming and feeding functions. Ichthyol Res 43:267–282

    Article  Google Scholar 

  • Ortego LS, Hawkins WE, Walker WW, Krol RM, Benson WH (1994) Detection of proliferating cell nuclear antigen in tissues of three small fish species. Biotech Histochem 69:317–323

    Article  PubMed  CAS  Google Scholar 

  • Paperna I (1978) Swimbladder and skeletal deformations in hatchery bred Sparus aurata. J Fish Biol 12:109–114

    Article  Google Scholar 

  • Persson P, Takagi Y, Bjornsson BT (1995) Tartrate resistant acid phosphatase as a marker for scale resorption in rainbow trout, Oncorhynchus mykiss: effects of estradiol-17β treatment and refeeding. Fish Physiol Biochem 14:329–339

    Article  CAS  Google Scholar 

  • Persson P, Bjornsson BT, Takagi Y (1999) Characterization of morphology and physiological actions of scale osteoclasts in the rainbow trout. J Fish Biol 54:669–684

    Article  Google Scholar 

  • Pinto JP, Conceicao N, Gavaia PJ, Cancela ML (2003) Matrix Gla protein gene expression and protein accumulation colocalize with cartilage distribution during development of the teleost fish Sparus aurata. Bone 32:201–210

    Article  PubMed  CAS  Google Scholar 

  • Potthoff T, Kelly S, Javech JC (1986) Cartilage and bone development in scombroid fishes. Fish Bull 84:647–678

    Google Scholar 

  • Rafael MS, Laizé V, Cancela ML (2006) Identification of Sparus aurata bone morphogenetic protein 2: molecular cloning, gene expression and in silico analysis of protein conserved features in vertebrates. Bone 39:1373–1381

    Article  PubMed  CAS  Google Scholar 

  • Redruello B, Estêvão MD, Rotllant J, Guerreiro PM, Anjos LI, Canario AVM, Power DM (2005) Isolation and characterization of piscine osteonectin and downregulation of its expression by parathyroid hormone-related protein. J Bone Miner Res 20:682–692

    Article  PubMed  CAS  Google Scholar 

  • Renn J, Winkler C (2009) Osterix-mCherry trangenic medaka for in vivo imaging of bone formation. Dev Dyn 238:241–248

    Article  PubMed  CAS  Google Scholar 

  • Renn J, Winkler C (2010) Characterization of collagen type 10a1 and osteocalcin in early and mature osteoblasts during skeleton formation in medaka. J Appl Ichthyol 26:196–201

    Article  CAS  Google Scholar 

  • Renn J, Schaedel M, Volff J-N, Goerlich R, Schartl M, Winkler C (2006a) Dynamic expression of sparc precedes formation of skeletal elements in the medaka (Oryzias latipes). Gene 372:208–218

    Article  PubMed  CAS  Google Scholar 

  • Renn J, Winkler C, Schartl M, Fisher R, Goerlich R (2006b) Zebrafish and medaka as models for bone reserach including implications regarding space-related issues. Protoplasma 229:209–214

    Article  PubMed  CAS  Google Scholar 

  • Ristovska M, Karaman B, Varraes W, Adriaens D (2006) Early development of the postcranial axial skeleton in Salmo letnica (Karaman, 1924) (Teleostei: Salmonidae). J Fish Biol 68:458–480

    Article  Google Scholar 

  • Rotllant J, Liu D, Yan Y-L, Postlethwait JH, Westerfield M, Du S-J (2008) Sparc (osteonectin) functions in morphogenesis of the pharyngeal skeleton and inner ear. Matrix Biol 27:561–572

    Article  PubMed  CAS  Google Scholar 

  • Sfakianakis DG, Koumoundouros G, Divanach P, Kentori M (2004) Osteological development of the vertebral column and the fins in Pagellus erythrinus (L. 1785). Temperature effect on the developmental plasticity and morpho-anatomical abnormalities. Aquaculture 232:407–424

    Article  Google Scholar 

  • Simmons DJ, Simmons NB, Marshall JH (1970) The uptake of calcium-45 in the acellular-boned toadfish. Calcif Tissue Int 5:206–221

    Article  CAS  Google Scholar 

  • Sire J-Y, Huysseune A (1993) Fine structure of the developing frontal bones and scales of the cranial vault in the cichlid fish Hemichromis bimaculatus (Teleostei, Perciformes). Cell Tissue Res 273:511–524

    Article  Google Scholar 

  • Sommerfeldt DW, Rubin CT (2001) Biology of bone and how it orchestrates the form and function of the skeleton. Eur Spine J 10 (Suppl 2):S86–S95

    PubMed  Google Scholar 

  • Suzuki N, Suzuki T, Kutokawa T (2000) Suppression of osteoclastic activities by calcitonin in the scales of goldfish (freshwater teleost) and nibbler fish (seawater fish). Peptides 21:115–124

    Article  PubMed  CAS  Google Scholar 

  • Velleman SG (2000) The role of the extracellular matrix in skeletal development. Poult Sci 79:985–989

    PubMed  CAS  Google Scholar 

  • Wagner EF, Karsenty G (2001) Genetic control of skeletal development. Curr Opin Genet Dev 11:527–532

    Article  PubMed  CAS  Google Scholar 

  • Wagner TU, Renn J, Riemensperger T, Volff J-N, Koster RW, Goerlich R, Schartl M, Winkler C (2003) The teleost fish medaka (Oryzias latipes) as genetic model to study gravity dependent bone homeostasis in vivo. Adv Space Res 32:1459–1465

    Article  PubMed  CAS  Google Scholar 

  • Weiss RE, Watabe N (1979) Studies on the biology of fish bon. III. Ultrastructure of osteogenesis and resorption in osteocytic (cellular) and anosteocytic (acellular) bones. Calcif Tissue Int 28:43–56

    Article  PubMed  CAS  Google Scholar 

  • Witten PE (1997) Enzyme histochemical characteristics of osteoblasts and mononucleated osteoclasts in a teleost fish with acellular bone (Oreochromis niloticus, Cichlidae). Cell Tissue Res 287:591–599

    Article  PubMed  Google Scholar 

  • Witten PE, Hall BK (2002) Differentiation and growth of kype skeletal tissues in anadromous male Atlantic salmon (Salmo salar). Int J Dev Biol 46:719–730

    PubMed  Google Scholar 

  • Witten PE, Hall BK (2003) Seasonal changes in the lower jaw skeleton in male Atlantic salmon (Salmo salar L.): remodelling and regression of the kype after spawning. J Anat 203:435–450

    Article  PubMed  Google Scholar 

  • Witten PE, Huysseune A (2007) Mechanisms of chondrogenesis and osteogenesis in fins. In: Hall BK (ed) Fins into limbs: evolution, development, and transformation. University of Chicago Press, Chicago, pp 79–92

    Google Scholar 

  • Witten PE, Huysseune A (2009) A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biol Rev 84:315–346

    Article  PubMed  Google Scholar 

  • Witten PE, Hansen A, Hall BK (2001) Features of mono- and multinucleated bone resorbing cells of the zebrafish Danio rerio and their contribution to skeletal development, remodeling, and growth. J Morphol 250:197–207

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Karsenty G (2002) Transcription factors in bone: developmental and pathological aspects. Trends Mol Med 8:340–345

    Article  PubMed  CAS  Google Scholar 

  • Yokoi H, Kobayashi T, Tanaka M, Nagahama Y, Wakamatsu Y, Takeda H, Araki K, Morohashi K, Ozato K (2002) Sox9 in a teleost fish, medaka (Oryzias latipes): evidence for diversified function of Sox9 in gonad differentiation. Mol Reprod Dev 63:5–16

    Article  PubMed  CAS  Google Scholar 

  • Young B, Lowe JS, Stevens A, Heath JW (2006) Wheater's functional histology: a text and colour atlas. Churchill Livingstone, London

    Google Scholar 

Download references

Acknowledgments

We thank Isabel Penisga for her contribution to the preparation of the artwork and Rita Soares for assistance with histology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dulce Estêvão.

Additional information

M.D.E. received a fellowship from the Programme for Educational Development of Portugal. This work was funded by the Portuguese National Science Foundation, grant no. POCI 2010 (POCI/CVT/61052/2004).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estêvão, M.D., Silva, N., Redruello, B. et al. Cellular morphology and markers of cartilage and bone in the marine teleost Sparus auratus . Cell Tissue Res 343, 619–635 (2011). https://doi.org/10.1007/s00441-010-1109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1109-y

Keywords

Navigation